Abstract:
An electronic device and method and power supply are disclosed. The electronic device includes comprising a connector for electrically coupling with an external power supply unit, and a processor. The processor implements the method, which includes detecting a connection state with the external power supply unit, and detecting whether power supplied from the external power supply unit is abnormal, and controlling the power when the power supplied has an abnormal value. The power supply may include a connector for electrically coupling with an electronic device, and a processor for detecting a connection state with the electronic device, detecting whether power supplied to the electronic device by the power supply unit has an abnormal value, and controlling the supplied power when the power is abnormal.
Abstract:
A call monitoring method for detecting an error in a Bearer-Independent Call Control (BICC) environment using an Internet Protocol (IP) as a bearer is provided, in which an MSC receives connection information about a called exchange from another MSC, requests IP resource allocation for configuring a termination to a Media GateWay (MGW) controlled by the MSC based on the received connection information about the called exchange, determines, upon receipt of a resource allocation failure message from the MGW, whether a cause of a resource allocation failure is an IP allocation error, and transmits the resource allocation failure message to a resource manager, if the cause of the resource allocation failure is an IP allocation error.
Abstract:
An electronic device is provided. The electronic device includes a housing, a battery included within the housing, a connector electrically connected to an external power supply device including an integrated circuit (IC) and exposed to a part of the housing, and a power management unit included within the housing and electrically connected to the connector, wherein the power management unit is configured to communicate with the IC of the external power supply device, and wherein the connector is configured to receive a first current of a first current value during at least a part of the communication and to receive a second current of a second current value greater than the first current value during at least a part in which the communication is not performed.
Abstract:
An electronic device is provided. The electronic device includes a connector to which an external device is connected, a control unit identifying a connected external device and controlling operations of a voltage conversion unit and a charging and discharging unit according to a result of an identification, the voltage conversion unit bypassing a supply voltage supplied from the external device, boosting the supply voltage, or converting a battery voltage of a battery connected to an electronic device to supply a converted voltage to the external device, according to the result of the identification, and the charging and discharging unit lowering a voltage supplied from the voltage conversion unit or bypassing the battery voltage of the battery to the voltage conversion unit, according to the result of the identification.
Abstract:
A method of performing a charging function by using different types of energy sources and an electronic device thereof are provided. The electronic device includes different types of circuits configured to acquire different types of energy sources, and a processor configured to determine an energy source for charging among the different types of energy sources based on respective current values for the different types of energy sources, and control the determined energy source for charging so as to be used in battery charging of the electronic device or in a system operation of the electronic device.
Abstract:
An electronic device comprising: an interface arranged to connect to an external power supply device and supply power to a battery; a sensor unit arranged to measure a temperature of the electronic device; and a power management unit configured to charge the battery based on the temperature.
Abstract:
A charging circuit for charging a battery of an electronic device includes a first switch having one side connected to an interface into which external power is input, a second switch having one side connected to the other side of the first switch, a third switch having one side connected to the other side of the second switch, a fourth switch having one side connected to the other side of the third switch, a flying capacitor located between the other side of the first switch and the other side of the third switch, an inductor having one side connected to the other side of the second switch, and a control circuit for controlling a charging function of the battery by controlling on/off of the first switch, the second switch, the third switch and the fourth switch.