Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Disclosed is a method of reporting beam measurement state information by a User Equipment (UE). The method may include: measuring beam state information by using a first reception chain and a second reception chain; controlling beam state information on the first reception chain to correspond to beam state information on the second reception chain; calculating state information on each beam based on the controlled beam state information on the first reception chain and beam state information on the second reception chain; and reporting state information on one or more beams.
Abstract:
The present disclosure relates to a communication technique for converging IoT technology with a 5G communication system for supporting a higher data transfer rate beyond a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail business, and services associated with security and safety) on the basis of 5G communication technology and IoT-related technology. A communication method of a terminal according to one embodiment of the present invention may comprise the steps of: checking information on at least one service supported by a terminal; selecting a first frequency band in which a cell search is to be performed; receiving a reference signal from at least one cell at the selected first frequency; selecting, as a target cell, a first cell from which the reference signal having the largest strength has been received; and when the target cell supports the at least one service supported by the terminal, accessing the target cell.
Abstract:
The present invention relates to a method and a device for selecting a cell in a mobile communication system and, more particularly, to a method and a device for selecting a cell for transmitting data, by a base station, not only in a licensed frequency band but in an unlicensed frequency band. In order to achieve the described task, a method for configuring a cell of a base station in a mobile communication system according to an embodiment of the present invention comprises the steps of: connecting with a terminal through a first cell of a licensed band; transmitting, to the terminal, a message for configuring multiple second cells in an unlicensed band through the first cell; and monitoring the configured multiple second cells in the unlicensed band, wherein the number of the multiple second cells exceeds the number of cells, a Carrier Aggregation (CA) of which the terminal can support. The present disclosure relates to a 5G or a pre-5G communication system to be provided in order to support a higher data transmission rate after a 4G communication system such as an LIE.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Disclosed is a method of reporting beam measurement state information by a User Equipment (UE). The method may include: measuring beam state information by using a first reception chain and a second reception chain; controlling beam state information on the first reception chain to correspond to beam state information on the second reception chain; calculating state information on each beam based on the controlled beam state information on the first reception chain and beam state information on the second reception chain; and reporting state information on one or more beams.
Abstract:
Provided are a method and apparatus for determining connection configuration between a user equipment (UE) and a base station (ENB) and performing handover in a wireless communication system supporting dual connectivity. The method of setting a connection configuration for a UE in a wireless communication system supporting dual connectivity may include: detecting occurrence of a handover event; selecting a macro ENB with the highest signal strength among neighboring macro ENBs and a small ENB with the highest signal strength among neighboring small ENBs; checking whether dynamic association is allowed in dual connectivity; and determining the connection configuration for the UE on the basis of the selected ENBs and checking result.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of operating a terminal and a base station, and a terminal apparatus and base station apparatus, are provided. The method includes receiving a signal including a synchronization sequence and control information, which is transmitted from a neighbor cell, and decoding the control information based on a reception signal strength of the signal.
Abstract:
Provided are a method and apparatus for determining connection configuration between a user equipment (UE) and a base station (ENB) and performing handover in a wireless communication system supporting dual connectivity. The method of setting a connection configuration for a UE in a wireless communication system supporting dual connectivity may include: detecting occurrence of a handover event; selecting a macro ENB with the highest signal strength among neighboring macro ENBs and a small ENB with the highest signal strength among neighboring small ENBs; checking whether dynamic association is allowed in dual connectivity; and determining the connection configuration for the UE on the basis of the selected ENBs and checking result.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to embodiments of the disclosure, a method performed by a Radio Access Network (RAN) Intelligent Controller (RIC) is provided. The method includes receiving a report message from an E2 node, generating a control message, based on the report message, and transmitting the control message to the E2 node. The control message may include an RAN configuration related to the E2 node. The report message may include at least one of User Equipment (UE) assistance information transmitted from a UE and UE expected behavior-related information transmitted from an Access and Mobility management Function (AMF).
Abstract:
A method of a communication technique in which a fifth generation (5G) communication system for supporting more high data transmission rate after a fourth generation (4G) system converges with an internet of things (IoT) technology, and a system is provided. The present disclosure may be applied to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, a retail business, security and safety-related services, or the like) based on a 5G communication technology and an IoT-related technology. A terminal receives, from a base station, a first message including configuration information of at least one band, receive, from the base station, a second message for activating a band among the at least one band, and activate the band according to the second message, the configuration information including indication of the at least one band, and each band of the at least one band being part of a bandwidth.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A mobility application method of a user equipment (UE) residing in a system of wireless communication systems, which supports transmission/reception of data, using a beamforming, via multiple input multiple output (MIMO) antennas is provided. The method includes measuring beam measurement reference signals that a network transmitted using different transmission nodes and evolved NodeB (eNBs) and transmitting the measured information to the network in a system using a number of beams.