摘要:
A method for improving the chemical stability of a vapor transfer membrane includes providing a vapor transfer membrane including an ionomer layer having protogenic groups and then annealing the vapor transfer membrane at a temperature greater than about 100° C. Advantageously, the performance and durability of WVT membranes are markedly improved by thermally annealing the membranes.
摘要:
A polymer useful as an ion conducting membrane for fuel cell applications includes both main chain and side chain protogenic groups. Methods for preparing the polymer include addition of the side chains both before and after addition of the protogenic groups.
摘要:
A polymer useful as an ion conducting membrane for fuel cell applications includes both main chain and side chain protogenic groups. Methods for preparing the polymer include addition of the side chains both before and after addition of the protogenic groups.
摘要:
A composite membrane for fuel cell applications includes a support substrate with a predefined void volume. The void volume is at least partially filled with an ion conducting polymer composition that includes an additive that inhibits polymer degradation. Characteristically, the ion conducting polymer composition includes a first polymer with a cyclobutyl moiety and a second polymer that is different than the first polymer.
摘要:
A membrane humidifier assembly includes a first flow field plate adapted to facilitate flow of a first gas thereto and a second flow field plate adapted to facilitate flow of a second gas thereto. A polymeric membrane is disposed between the first and second flow fields and adapted to permit transfer of water from the first flow field plate to the second flow field plate. The polymeric membrane includes a polymer having perfluorocyclobutyl groups and a pendant side chain having a protogenic group.
摘要:
In one embodiment, a copolymer comprises a sulfonatable segment covalently linked to an un-sulfonatable segment through an organic linking group. The sulfonatable group segment may be sulfonated through direction sulfonation or sulfonation through a spacer molecule. In another embodiment, a copolymer comprises a sulfonated segment and an unsulfonated segment. A membrane electrode assembly and a fuel cell may be produced using the copolymer.
摘要:
An ink composition for forming a fuel cell electrode includes a catalyst composition, a polymeric binder, a polymeric dispersant, and a solvent. The polymeric dispersant includes a perfluorocyclobutyl-containing polymer.
摘要:
An ink composition for forming a fuel cell electrode includes a catalyst composition, a polymeric binder, a polymeric dispersant, and a solvent. The polymeric dispersant includes a perfluorocyclobutyl-containing polymer.
摘要:
In one embodiment, a copolymer comprises a sulfonatable segment covalently linked to an un-sulfonatable segment through an organic linking group. The sulfonatable group segment may be sulfonated through direction sulfonation or sulfonation through a spacer molecule. In another embodiment, a copolymer comprises a sulfonated segment and an unsulfonated segment. A membrane electrode assembly and a fuel cell may be produced using the copolymer.
摘要:
A fuel cell includes a first flow field plate defining at least one flow field channel. A cathode catalyst layer is disposed over at least a portion of the first flow field plate. A polymeric ion conducting membrane is disposed over cathode catalyst layer. An anode catalyst layer is disposed over the polymeric ion conducting membrane. Finally, a second flow field plate defining at least one flow field channel is disposed over the anode catalyst layer. The polymeric ion conducting membrane extends beyond the cathode catalyst layer and the anode catalyst layer such that the fuel cell has at least one peripheral region with the polymeric catalyst layer interposed between first flow field plate and the second flow field plate without the cathode catalyst layer and the anode catalyst layer.