Abstract:
A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and α3). Further, a substituent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and α3).
Abstract:
A light-emitting device with a long lifetime is provided. In a light-emitting device that includes an EL layer between a pair of electrodes, a light-emitting layer included in the EL layer has a functional stacked-layer structure, whereby the efficiency and reliability of the light-emitting device can be increased.
Abstract:
A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
Abstract:
An object is to provide a highly reliable display unit having a function of sensing light. The display unit includes a light-receiving device and a light-emitting device. The light-receiving device includes an active layer between a pair of electrodes. The light-emitting device includes a hole-injection layer, a light-emitting layer, and an electron-transport layer between a pair of electrodes. The light-receiving device and the light-emitting device share one of the electrodes, and may further share another common layer between the pair of electrodes. The hole-injection layer is in contact with an anode and contains a first compound and a second compound. The electron-transport property of the electron-transport layer is low; hence, the light-emitting layer is less likely to have excess electrons. Here, the first compound is the material having a property of accepting electrons from the second compound.
Abstract:
A novel organic compound is provided. An organic compound that emits light with high chromaticity is provided. An organic compound that emits blue light with high chromaticity is provided. An organic compound with high emission efficiency is provided. An organic compound having an excellent hole-transport property is provided. An organic compound having high reliability is provided. An organic compound that has a naphtho[2,3-b;7,6-b′]bisbenzofuran skeleton or a naphtho[2,3-b;7,6-b′]bisbenzothiophene skeleton and has a molecular weight of less than or equal to 5000 is provided. The present inventors have found that the organic compound is a significantly effective skeleton as a luminophor of a light-emitting element. The organic compound has high emission efficiency and exhibits favorable blue light emission; thus, a light-emitting element using the organic compound can be a blue light-emitting element with high emission efficiency.
Abstract:
A novel organic compound that is highly convenient, useful, or reliable is to be provided. The organic compound is represented by General Formula (G0).
In General Formula (G0), X and Y each independently represent an oxygen atom or a sulfur atom. Ar1 to Ar4 each independently represent an aromatic ring or a nitrogen-containing heteroaromatic ring, the aromatic ring contains 6 to 10 carbon atoms, and the nitrogen-containing heteroaromatic ring is composed only of one or more six-membered rings and contains 4 to 9 carbon atoms. R, R11, R21, R21, R22, R31, R32, R41, and R42 each independently represent hydrogen, a straight-chain alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, substituted or unsubstituted diarylamine having 6 to 13 carbon atoms, or substituted or unsubstituted heteroarylamine having 3 to 18 carbon atoms.
Abstract:
An electron-transport layer material with a low refractive index is provided. An organic compound represented by General Formula (G1) is provided. In General Formula (G1), one to three of Q1 to Q3 represent N and when one or two of Q1 to Q3 represent N, the remaining two or one of Q1 to Q3 represent CH. Furthermore, R0 represents any of hydrogen, an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and a group represented by Formula (G1-1). At least one of R1 to R15 represents a substituted or unsubstituted group including any one of a pyrimidinyl group, a pyrazinyl group, and a triazinyl group, and the others each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 14 carbon atoms forming a ring, and a substituted or unsubstituted pyridinyl group.
Abstract:
A light-emitting element that contains a fluorescent compound, which has high efficiency is provided. A light-emitting element in which the proportion of delayed fluorescence to the total light emitted from the light-emitting element is higher than that in a conventional light-emitting element is provided. Emission efficiency of the light-emitting element containing a fluorescent compound can be improved by increasing the probability of TTA caused by an organic compound in an EL layer, converting energy of triplet excitons, which does not contribute to light emission, into energy of singlet excitons, and making the fluorescent compound emit light by energy transfer of the singlet excitons.
Abstract:
A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; α represents a substituted or unsubstituted naphthyl group; β represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R1 to R8 each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
Abstract:
A light-emitting element that contains a fluorescent compound, which has high efficiency is provided. A light-emitting element in which the proportion of delayed fluorescence to the total light emitted from the light-emitting element is higher than that in a conventional light-emitting element is provided. Emission efficiency of the light-emitting element containing a fluorescent compound can be improved by increasing the probability of TTA caused by an organic compound in an EL layer, converting energy of triplet excitons, which does not contribute to light emission, into energy of singlet excitons, and making the fluorescent compound emit light by energy transfer of the singlet excitons.