Abstract:
An auto-balancing transportation device having a wheel structure and foot platforms that pivot between an in-use and a stowed position. The pivot axis for each platform is provided within the wheel structure so that the force exerted by a rider when stepping on a foot platform is applied to the wheel structure at a point within the wheel structure, as opposed to external to it, which is unstable and may cause the device to tip over.
Abstract:
A two-wheel, self-balancing transportation device having a foot platform zone associated with each wheel. Various sensor or control arrangements are disclosed. In one embodiment, torsion sensing is used to determine a rider's fore-aft weight distribution on one foot platform zone relative to the other. The torsion-based sensing is preferably combined with fore-aft platform position sensing to achieve a driving and turning of the device. In another embodiment, pressure sensors are used to determine a rider's fore-aft weight distribution on one foot platform zone relative to the other. In yet another embodiment, a relative position sensor is used to determine the relative position of movable platforms sections. Other features and embodiments are also disclosed.
Abstract:
A central wheel structure transportation device with fore-aft auto-balancing. The auto-balancing is selectively enabled (and disabled) to improve rider experience, safety and ease of mounting and use. In one embodiment, during mounting, auto-balancing is not enabled until the lateral tilt angle of the device is below a given threshold from vertical. Fore-aft sensors, lateral tilt sensors, foot presence sensors, and/or accelerometers, or the like, may be used in various combinations to affect device operation and performance.
Abstract:
An auto-balancing transportation device configured for being ridden in a foot forward or sideways standing position. The rider platform has front and rear foot platform areas and two connecting members, located on opposite lateral sides of the device, that couple the front and rear platform areas. Two drive wheels are located under or through the platform. The front and/or rear platform areas are movable or twistable so as to alter the fore-aft tilt of one or more of the connecting members. Position sensors associated with each connecting member are used to drive a corresponding drive wheel. In this manner, differences in fore-aft tilt angle of the two connecting members achieves a turning of the device.
Abstract:
An auto-balancing transportation device having a compact form. Left and right foot platform sections are coupled for fore-aft tilt angle movement relative to one another. Left and right wheels are provided under the respective foot platforms. With a rider's weight directed primarily downward onto the wheels and not onto the coupling structure, the coupling structure may have sufficient space to house the battery. In addition, more efficient and lighter weight supports and bearing arrangements may be used in the coupling structure. Various embodiments are disclosed.
Abstract:
An ergonomic and rider-friendly auto-balancing personal transportation device. The device may have a central wheel structure with one or more tires and deployable foot platforms located on both sides of the central wheel structure. The platforms may be linked to a handle, such that lifting the handle retracts the foot platforms and releasing the handle may deploy them. The tire size and platform size may be set so that the device is easy to step on to, and the distance to ground when dismounting is reduced. Dual tire and single wider tire embodiments are disclosed as are other features and embodiments.
Abstract:
A single-wheel structure transportation device with an extendable walking handle. The transportation device may include a motor, gyroscopic fore-aft self-balancing, and foot platforms for riding the device in a substantially standing position. Various extendable handle arrangements are disclosed that permit a use to readily maneuver the device while walking and to stow the walking handle with or within the frame or housing of the device while the user is riding the device.
Abstract:
A shaft mount sail device that may have a sail made of a lightweight, flexible material that is capable of being tightly wound about the shaft of a paddle, push-pole or other shaft, a mechanism for attaching the sail to the shaft, and a clamping member coupled to the sail and configured to releasably clamp onto the shaft. The sail may be rolled tightly about the shaft and the clamping member fit over the shaft to secure the sail in the stowed position. The clamping member in the stowed position may serve as the handle by which a user grasps and operates the shaft. Various embodiments are disclosed.