Abstract:
A process for converting a lignocellulosic biomass comprising a) converting a lignocellulosic biomass into a fuel and producing an aqueous waste stream comprising at least one dissolved organic material and at least one dissolved sulfur-containing compound, wherein the aqueous waste stream has a sulfur content of more than 400 parts per million by weight, relative to the weight of the aqueous waste stream; and b) treating the aqueous waste stream, said treating comprises anaerobic digestion of a mixture comprising a first aqueous feed comprising the aqueous waste stream and a second aqueous feed, wherein the mixture has a sulfur content of at most 400 parts per million by weight, relative to the weight of the mixture.
Abstract:
A xylan-containing feed is contacted, in the first reactor essentially operated at plug flow, with an aqueous solution of an acid at a temperature in the range from equal to or more than 140° C. to equal to or less than 210° C. to produce an intermediate product. Then, the intermediate product is contacted, in the second reactor which comprises a continuously stirred tank reactor, with an aqueous solution of an acid at a temperature in the range from more than 130° C. to equal to or less than 200° C. to produce a final product.
Abstract:
A process for preparing glycols from a lignocellulosic solid biomass involves contacting the biomass with an organic solvent comprising a low boiling point alcohol and a pre-treatment acid at a temperature in a range from 80 to 220° C. and a pressure in a range from 1 to 50 bara. The resulting mixture, having less than wt. % water, is separated into a pre-treated solid residue comprising cellulose and a liquid stream comprising dissolved lignin. The pre-treated solid residue is subjected to a hydrogenolysis reaction. generating a glycols stream, a lights stream, comprising a first portion of organic solvent, and a heavies stream. At least part of the liquid stream is separated to produce a second portion of organic solvent and a lignin stream. At least part of the first and second portions of organic solvent is recycled to the contacting step.
Abstract:
A process for the production of high purity mono-ethylene glycol (MEG) from a product stream of a saccharide hydrogenolysis process. The process having the steps of: (i) removing solvent from the product stream to provide a solvent-lean product stream; (ii) subjecting the solvent-lean product stream to distillation to provide a bottoms stream comprising high boiling by-products and a top stream comprising a mixture comprising MEG and 1,2-butanediol (1,2-BDO); (iii) providing said mixture having MEG and 1,2-BDO as a feed to a distillation column; (iv) providing a feed comprising an extractant of C3 to C6 alcohols and mixtures thereof to the distillation column above the mixture comprising MEG and 1,2-BDO; (v) removing a stream comprising MEG and the extractant as a bottoms stream from the distillation column; and (vi) subjecting the stream comprising MEG and the extractant to distillation to provide a top stream comprising high purity MEG.
Abstract:
The invention provides a process for the selective hydrogenation of glycolaldehyde in a process stream comprising glycolaldehyde and one or more monosaccharide in a solvent, said process comprising contacting the process stream with hydrogen in the presence of a hydrogenation catalyst composition at a temperature of no more than 150° C. and for a residence time of no more than 90 minutes.
Abstract:
The invention provides a process for the production of alkylene glycols, said process comprising providing a feed comprising at least 10 wt % of lignocellulose and/or one or more saccharides, on the basis of the overall feed, in water to a reactor; also providing a feed comprising one or more hydrogen-donating organic solvent species to the reactor; contacting the lignocellulose and/or one or more saccharides in the reactor with a retro-aldol catalyst composition at a temperature in the range of from at least 160 to at most 270° C., wherein the combined solvent system within the reactor comprises in the range of from at least 5 to at most 95 wt % of one or more hydrogen-donating organic solvent species and in the range of from at least 5 to at most 95 wt % of water.
Abstract:
The invention provides a catalyst system comprising: a) one or more Group 1 metal phosphotungstate-containing species; and b) one or more catalytic species suitable for hydrogenation; and a process for the preparation of monoethylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor in the presence of a solvent and said catalyst system.
Abstract:
A process for the preparation of glycols from a saccharide-containing feedstock having the steps of: (a) preparing a reaction mixture in a reactor vessel comprising the saccharide-containing feedstock, a solvent, hydrogen, a catalyst component with retro-aldol catalytic capabilities and a first hydrogenation catalyst comprising an element selected from groups 8, 9 and 10 of the periodic table; (b) monitoring the hydrogenation activity in the reactor vessel; (c) when the activity of the first hydrogenation catalyst declines, as indicated by the crossing of a threshold, supplying into the reaction mixture in the reactor vessel a catalyst precursor comprising one or more elements selected from groups 8, 9, 10 and 11 of the periodic table; and (d) converting the catalyst precursor in the presence of hydrogen in the reactor vessel to a second hydrogenation catalyst to supplement the declined hydrogenation activity in the reactor vessel.
Abstract:
The invention provides a process for the continuous production of one or more glycols from a saccharide-containing feedstock, said process comprising the steps of: i) contacting the saccharide-containing feedstock with hydrogen in the presence of one or more catalysts in a reactor at a reaction temperature and a reaction pressure in a continuous manner, to provide a reaction effluent stream comprising hydrogen and one or more glycols; ii) separating hydrogen from the reaction effluent stream, without substantial de-pressurisation of said reaction effluent stream to provide a separated hydrogen stream and a liquid effluent stream; and iii) providing at least a portion of the separated hydrogen stream as a hydrogen recycle stream to the reactor for re-use in step i).
Abstract:
The invention provides a process for the preparation of ethylene glycol and 1, 2-propylene glycol from starting material comprising one or more saccharides, wherein the process comprises the steps of i) providing the starting material and hydrogen to a first reactor, which first reactor operates with mixing; ii) reacting said starting material and hydrogen in the first reactor in the presence of solvent and a catalyst system; iii) continuously removing a first reactor product stream from the first reactor; iv) supplying at least a portion of the first reactor product stream to a second reactor, which reactor operates essentially in a plug flow manner; and v) further reacting the first reactor product stream with hydrogen in the presence of a solvent and optionally a catalyst system in the second reactor.