摘要:
A method for producing dicarboxylic acid. The method includes: subjecting a raw material system including a cyclic olefin and a lower monocarboxylic acid to an addition reaction in the presence of an addition reaction catalyst to generate an intermediate product system including cyclic carboxylic acid ester; and subjecting the intermediate product system including cyclic carboxylic acid ester to a ring-opening and oxidation reaction in the presence of an oxidant and an oxidation catalyst to generate a corresponding dicarboxylic acid product. The addition reaction in the dicarboxylic acid synthesis route achieves a high single-pass conversion rate, and the selectivity of the corresponding cyclic carboxylic acid ester is high. The addition-oxidation synthesis route achieves faster reaction rates for both the addition reaction and oxidation reaction, and high yield of corresponding dicarboxylic acid product. The addition-oxidation based synthesis route is suitable for continuous, stable and large-scale production of corresponding dicarboxylic acid product.
摘要:
Provided is a method for preparing a diol. In the method, a saccharide and hydrogen as raw materials are contacted with a catalyst in water to prepare the diol. The employed catalyst is a composite catalyst comprised of a main catalyst and a cocatalyst, wherein the main catalyst is a water-insoluble acid-resistant alloy; and the cocatalyst is a soluble tungstate and/or soluble tungsten compound. The method uses an acid-resistant, inexpensive and stable alloy needless of a support as a main catalyst, and can guarantee a high yield of the diol in the case where the production cost is relatively low.
摘要:
A process comprising a heterogenous reaction between a solid metal organic framework supported heteropolyacid catalyst and a hydrocarbon feed to form a modified hydrocarbon stream. The modified hydrocarbon stream comprises essentially of C6+ hydrocarbons.
摘要:
The invention provides a catalyst system comprising: a) one or more silver tungstate-containing species; and b) one or more catalytic species suitable for hydrogenation, wherein the weight ratio of said one or more silver tungstate-containing species to the one or more catalytic species suitable for hydrogenation is greater than 2.5:1, on the basis of the total weight of the catalyst system; and a process for the preparation of monoethylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor at a reactor temperature in the range of from 145 to 190 ° C. in the presence of a solvent and said catalyst system.
摘要:
A composition for the destruction of chemical warfare agents and toxic industrial chemicals having a polyoxometalate (POM) attached to an amine, carboxylic acid, or ammonium substituted porous polymer. Also disclosed is a method for attaching a POM to an amine, carboxylic acid, or ammonium substituted porous polymer by (1) dissolving the POM in water or an organic solvent, adding the functionalized porous polymer, whereby the POM ionically attaches to the amine, carboxylic acid or ammonium group, or (2) heating the POM and functionalized polymer in the presence of a dehydrating agent whereby an imide bond is produced between the POM and the functionality on the porous polymer.
摘要:
A continuous process for the preparation of propylene oxide, comprising (i) providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, water, optionally propane, and at least one dissolved potassium salt of a phosphorus oxyacid wherein the molar ratio of potassium relative to phosphorus in the at least one potassium salt of a phosphorus oxyacid is in the range of from 0.6 to 1.4; (ii) passing the liquid feed stream provided in (i) into an epoxidation reactor comprising a catalyst comprising a titanium zeolite of structure type MWW comprising zinc, and subjecting the liquid feed stream to epoxidation reaction conditions in the epoxidation reactor, obtaining a reaction mixture comprising propylene oxide, acetonitrile, water, the at least one dissolved potassium salt of a phosphorus oxyacid, optionally propene, and optionally propane; (iii) removing an effluent stream from the epoxidation reactor, the effluent stream comprising propylene oxide, acetonitrile, water, at least a portion of the at least one dissolved potassium salt of a phosphorus oxyacid, optionally propene, and optionally propane.
摘要:
Process of preparing hydroconversion catalyst comprising: a calcined, predominantly alumina, oxide support; a hydrogenating-dehydrogenating active phase comprising group VIB metal, optionally group VIII metal, optionally phosphorus, the catalyst having: specific surface area ≧100 m2/g, total pore volume ≧0.75 ml/g, median mesopore diameter by volume ≧18 nm, mesopore volume ≧0.65 ml/g, macropore volume 15-40% of total pore volume; comprising: a) dissolving acidic aluminium precursor; b) adjusting pH with basic precursor; c) co-precipitating acidic and basic precursors, at least one containing aluminium, to form suspension of alumina gel with a targeted alumina concentration; d) filtration; e) drying to a powder; f) forming; g) thermal treatment to an alumina oxide support; h) impregnating of the hydrogenating-dehydrogenating active phase on the alumina oxide support. Catalyst prepared by this process and use of this catalyst for hydrotreating or hydroconverting heavy hydrocarbon feedstocks.
摘要:
The present invention provides a process for the preparation of ethene by vapour phase chemical dehydration of a feed comprising ethanol, said process comprising contacting the feed with a supported heteropolyacid catalyst in a reactor, wherein the feed temperature is at least 250° C. and the pressure inside the reactor is at least 0.80 MPa but less than 1.80 MPa.
摘要:
A catalyst for catalytic cracking in a fluidized-bed is disclosed. The catalyst comprises a support and a composition having the chemical formula (on the basis of the atom ratio): AaBbPcOx for use in the industrial production of ethylene and propylene by catalytically cracking naphtha.
摘要:
A hydroprocessing catalyst composition that comprises a metal-incorporated support having incorporated therein a metal component and a chelating agent, and, further comprising a polar additive. The catalyst composition is prepared by incorporating in a single step at least one metal component and a chelating agent into a support material to form a metal-incorporated support followed by drying the metal-incorporated support and thereafter incorporating therein a polar additive.