Abstract:
The differential scanning calorimeter includes: a heat sink, which stores a measuring sample and a reference material; a heater, which heats the heat sink; a cooling block, which is separated away from the heat sink, and positioned below the heat sink; a thermal resistor, which is connected between the heat sink and the cooling block, and forms a heat flow path therebetween; a cooling head, which is detachably fitted to the cooling block, and is cooled by an external cooling device; and differential heat flow detectors, which output a temperature difference between the measuring sample and the reference material as a heat-flow-difference signal, in which: the cooling block forms a side wall to fit the bore of the cooling head outward from the joint of the thermal resistance body; the top surface of the cooling head is lower than the joint.
Abstract:
A method of preparing a poly(amic acid) includes a step of reacting an aromatic diacid anhydride or alicyclic diacid anhydride, an aliphatic diamine or alicyclic diamine, and an acid having a pKa of 3 to 5. A method of preparing a polyimide by imidating the resulting poly(amic acid) is also disclosed.
Abstract:
A differential scanning calorimeter has a heat sink for accommodating therein a measurement sample and a reference material, and a differential heat flow detector that detects a temperature difference between the sample and the reference material. A cooling mechanism cools the heat sink, and a thermoconductor is disposed between the cooling mechanism and the heat sink and forms a heat flow path between the two. A first heater heats the heat sink, and a second heater heats the thermoconductor to thereby heat the heat sink. The second heater begins operating before the first heater nears its rated maximum output power.
Abstract:
A method of brazing an aluminum or aluminum alloy material, containing brazing an aluminum alloy brazing sheet that has an aluminum or aluminum alloy core material and, being clad on one or both surfaces, a filler alloy layer comprised of an Al—Si-based alloy and contains Mg incorporated at least in a constituent layer except the filler alloy layer, thereby to form a hollow structure whose one surface clad with the filler alloy is the inner surface, wherein the brazing is carried out in an inert gas atmosphere without applying any flux; and an aluminum alloy brazing sheet which satisfies the relationship: (X+Y)≦a/60+0.5 and X>Y, wherein a (μm) represents the thickness of the filler alloy layer clad on the core material of the inner side of the hollow structure, and X and Y (mass %) represent the Mg contents of the core material and the brazing material, respectively.
Abstract:
The present invention provides a thermal analyzer having a cooling device which can realize cooling of a specimen to a temperature equal to or below −100° C. by suppressing the consumption of gas also in performing rapid cooling. The cooling device includes a cooling gas inlet port and a cooling gas discharge port for a gas cooling device and an electric cooling device fixing mechanism, wherein the cooling device and the thermal analyzer are brought into thermal contact with each other. Due to such a constitution, it is possible to simultaneously connect the gas cooling device and the electric cooling device.
Abstract:
A thermal analyzer heats and cools a sample placed inside a furnace for measuring a thermal characteristic of the sample during heating and cooling. The thermal analyzer has a multilayer structure for covering the furnace and its surroundings so as to isolate the furnace and its surroundings from an external environment. The multilayer structure includes a multilayer wall with two layers formed of a material having high thermal conductivity and heat dissipation property. The two layers are spaced apart from one another to provide therebetween an interlayer that contains a substance having a heat capacity substantially equal to a gas contained in the furnace so that heat transfer between the two layers is minimized.
Abstract:
A differential scanning calorimeter (1) includes: a sample container (2) for receiving a measurement sample; a reference substance container (3) for receiving a reference substance; a heat sink (10); a thermal resistance (5), which is connected between the sample container and the heat sink, and between the reference substance container and the heat sink to form heat flow paths therebetween; a sample-side thermocouple (7), which is thermally connected to the thermal resistance at a portion in the vicinity of the sample container with its hot-junction (7c) being insulated; and a reference substance-side thermocouple (8), which is thermally connected to the thermal resistance at a portion in the vicinity of the reference substance container with its hot junction (8c) being insulated, in which the sample-side thermocouple and the reference substance-side thermocouple output a heat flow difference signal indicating a temperature difference between the measurement sample and the reference substance.
Abstract:
A mast assembly for a forklift truck includes a plurality of guide units. At least one of the guide units includes a sliding pad member made of a plastic material and having a block-shaped body, which is hollow, is open at its base side, and has a rectangular ring-shaped cross section. The sliding pad member has a rectangular, plain, front wall provided at the side of the block-shaped body opposite to the base side thereof. The front wall has a sliding contact surface. Reinforcement ribs are formed on the inner surface of the front wall. Grooves are formed in the sliding contact surface, extending along the respective ones of the reinforcement ribs and helping avoid formation of shrinkage depressions in the sliding contact surface. The block-shaped body includes first and second pairs of opposing side walls. Tabs are formed on the first pair of opposing side walls.
Abstract:
In order to form a texture structure of inverse pyramid concavities with high speed and accuracy, when a reflection preventing texture is formed on a surface of a photovoltaic power device by laser patterning of an etching resistance film and wet etching, a plurality of laser apertures are machined in a diagonal direction of a square to be a base of the intended pyramid concavity by using a pulse laser and a laser beam splitting means, and a laser aperture pitch between the squares is set to be larger than a pitch on the diagonal.
Abstract:
The present invention provides a pest control composition comprising, as active ingredients, an amide compound of the formula (I) [(I) where in R1 and R3 represent, for example, a C1-C6 alkyl group; R2 represent, for example, a Hydrogen atom, a C1-C6 alkyl group; R4 represent, for example, a halogen atom, a C1-C6 alkyl group; R5 represent, for example, a halogen atom, a cyano group; R6 and R7 represent, for example, a halogen atom] and pyriproxyfen; and so on.