Abstract:
A data management system or “DMS” provides an automated, continuous, real-time, substantially no downtime data protection service to one or more data sources associated with a set of application host servers. To facilitate the data protection service, a host driver embedded in an application server captures real-time data transactions, preferably in the form of an event journal that is provided to other DMS components. The driver functions to translate traditional file/database/block I/O and the like into a continuous, application-aware, output data stream. The host driver includes an event processor. When a data protection command for a given data source is forwarded to a host driver, the event processor enters into an initial upload state. During this state, the event processor gathers a list of data items of the data source to be protected and creates a data list. Then, the event processor moves the data (as an upload, preferably one data element at a time) to a DMS core to create initial baseline data. In an illustrative embodiment, the upload is a stream of granular application-aware data chunks that are attached to upload events. Simultaneously, while the baseline is uploading and as the application updates the data on the host, checkpoint granular data, metadata, and data events are continuously streamed into the DMS core. During this upload phase, the application does not have to be shutdown.
Abstract:
A method is integrated into the local operating system of a test machine. The disclosed technique preferably uses a master copy of one or more data objects from a first location to create virtual data objects (e.g., files or folders) that appear to be part of a file system mounted to a test machine in a second location. This disclosure describes a “projection” method and computer program that enables access to a destination object at a target location immediately upon initiation of a copy command at a source location while a copy operation is carried out in a background manner.
Abstract:
A data management system or “DMS” provides data services to data sources associated with a set of application host servers. The data management system typically comprises one or more regions, with each region having one or more clusters. A given cluster has one or more nodes that share storage. When providing continuous data protection and data distribution, the DMS nodes create distributed object storage to provide the necessary real-time data management services. The objects created by the DMS nodes are so-called active objects. The distributed object store can be built above raw storage devices, a traditional file system, a special purpose file system, a clustered file system, a database, and so on. According to the present invention, the DMS active object store provides an indexing service to the active objects. In an illustrative embodiment, any object property that has a given attribute is indexed and, as a result, the attribute becomes searchable. The DMS provides hierarchical distributed indexing using index trees to facilitate searching in a highly efficient manner.
Abstract:
The present invention provides a distributed clustering method to allow multiple active instances of consistency management processes that apply the same encoding scheme to be cooperative and function collectively. The techniques described herein facilitate an efficient method to apply an erasure encoding and decoding scheme across dispersed data stores that receive constant updates. The technique can be applied on many forms of distributed persistent data stores to provide failure resiliency and to maintain data consistency and correctness.
Abstract:
A data management system or “DMS” provides an automated, continuous, real-time, substantially no downtime data protection service to one or more data sources associated with a set of application host servers. To facilitate the data protection service, a host driver embedded in an application server captures real-time data transactions, preferably in the form of an event journal that is provided to other DMS components. The driver functions to translate traditional file/database/block I/O and the like into a continuous, application-aware, output data stream. The host driver includes an event processor. When an authorized user determines that a primary copy of the data in the host server has become incorrect or corrupted, the event processor can perform a recovery operation to an entire data source or a subset of the data source using former point-in-time data in the DMS. The recovery operation may have two phases. First, the structure of the host data in primary storage is recovered to the intended recovering point-in-time. Thereafter, the actual data itself is recovered. The event processor enables such data recovery in an on-demand manner, in that it allows recovery to happen simultaneously while an application accesses and updates the recovering data.
Abstract:
A data management system that protects data into a continuous object store includes a management interface having a time control. The time control allows an administrator to specify a “past” time, such as a single point or range. When the time control is set to a single point, a hierarchical display of data appears on a display exactly as the data existed in the system at that moment in the past. The time control enables the management interface to operate within a history mode in which the display provides a visual representation of a “virtual” point in time in the past during which the data management system has been operative to provide the data protection service.
Abstract:
A data management system or “DMS” provides an automated, continuous, real-time data protection service to one or more data sources associated with a set of application host serves. To facilitate the service, a host driver embedded in an application server captures real-time data transactions. When a data protection command for a given data source is forwarded to a host driver, an event processor enters into an initial upload state. During this state, the event processor gathers a list of data items to be protected and creates a data list. Then, the event processor moves the data to a DMS core to create initial baseline data. The upload is a stream of application-aware data chunks that are attached to upload events. A resynchronization state is entered when there is a suspicion that the state of the data in the host is out-of-sync with the state of the most current data in the DMS.
Abstract:
An efficient method to apply an erasure encoding and decoding scheme across dispersed data stores that receive constant updates. A data store is a persistent memory for storing a data block. Such data stores include, without limitation, a group of disks, a group of disk arrays, or the like. An encoding process applies a sequencing method to assign a sequence number to each data and checksum block as they are modified and updated onto their data stores. The method preferably uses the sequence number to identify data set consistency. The sequencing method allows for self-healing of each individual data store, and it maintains data consistency and correctness within a data block and among a group of data blocks. The inventive technique can be applied on many forms of distributed persistent data stores to provide failure resiliency and to maintain data consistency and correctness.
Abstract:
A data management system or “DMS” provides data services to data sources associated with a set of application host servers. The data management system typically comprises one or more regions, with each region having one or more clusters. A given cluster has one or more nodes that share storage. When providing continuous data protection and data distribution, the DMS nodes create distributed object storage to provide the necessary real-time data management services. The objects created by the DMS nodes are so-called active objects. The distributed object store can be built above raw storage devices, a traditional file system, a special purpose file system, a clustered file system, a database, and so on. According to the present invention, the DMS active object store provides an indexing service to the active objects. In an illustrative embodiment, any object property that has a given attribute is indexed and, as a result, the attribute becomes searchable. The DMS provides hierarchical distributed indexing using index trees to facilitate searching in a highly efficient manner.
Abstract:
A data management system or “DMS” provides an automated, continuous, real-time, substantially no downtime data protection service to one or more data sources associated with a set of application host servers. To facilitate the data protection service, a host driver embedded in an application server captures real-time data transactions, preferably in the form of an event journal that is provided to other DMS components. The driver functions to translate traditional file/database/block I/O and the like into a continuous, application-aware, output data stream. The host driver includes an event processor that provides the data protection service, preferably by implementing a finite state machine (FSM). In particular, the data protection is provided to a given data source in the host server by taking advantage of the continuous, real-time data that the host driver is capturing and providing to other DMS components. The state of the most current data in DMS matches the state of the data in the host server; as a consequence, the data protection is provided under the control of the finite state machine as a set of interconnected phases or “states.” The otherwise separate processes (initial data upload, continuous backup, blackout and data resynchronization, and recovery) are simply phases of the overall data protection cycle. As implemented by the finite state machine, this data protection cycle preferably loops around indefinitely until, for example, a user terminates the service. A given data protection phase (a given state) changes only as the state of the data and the environment change (a given incident).