摘要:
A telecommunications device is provided. The telecommunications device comprises a processor configured such that the device sends a first message to a database management component, the first message containing a communications key encrypted by a database management component key. The processor is further configured such that the device receives a second message from the database management component, the second message encrypted by the communications key. The processor is further configured such that, when the device is able to decrypt the second message, the device considers the database management component to be legitimate.
摘要:
A device and method are provided for concurrently using a plurality of radio access technologies (RATs) to support a wireless-enabled communications session. A set of data is processed at a client node to identify a subset of priority data. The set of data and the subset of priority data are respectively provided to a first and second protocol stack, which correspond to a first and second RAT. The first and second protocol stacks are then used to control the transmission of a first and second set of transmitted data, which in turn respectively comprise the set of data and the subset of priority data. The first and second sets of transmitted data are received by an access node, which uses corresponding first and second protocol stacks to control their reception. The first and second sets of transmitted data are then processed to generate a set of received data.
摘要:
A mobile relay system for supporting communications between a fixed station and mobile terminals comprising a plurality of mobile relay stations that are associated with each other and provided on a moving platform, wherein each of the plurality of mobile relay stations is capable of facilitating communications with mobile terminals within communication range and at least one of the plurality of mobile relay stations is further capable of facilitating communications with a fixed station within communication range of the at least one of the plurality of mobile relay stations.
摘要:
A device and method are provided for concurrently using a plurality of radio access technologies (RATs) to support a wireless-enabled communications session. A set of data is processed at a client node to identify a subset of priority data. The set of data and the subset of priority data are respectively provided to a first and second protocol stack, which correspond to a first and second RAT. The first and second protocol stacks are then used to control the transmission of a first and second set of transmitted data, which in turn respectively comprise the set of data and the subset of priority data. The first and second sets of transmitted data are received by an access node, which uses corresponding first and second protocol stacks to control their reception. The first and second sets of transmitted data are then processed to generate a set of received data.
摘要:
The present invention employs hierarchical modulation to simultaneously transmit data over different modulation layers using a carrier RF signal. Each modulation layer may be of a higher or lower order than the other modulation layers. Certain embodiments of the present invention may transmit different information on the different modulation layers. Other embodiments of the present invention may use the different layers for processing information differently.
摘要:
One or more relay stations may be employed along a wireless communication access path between an ingress station and an egress station. A logical communication tunnel is established between the ingress and egress stations through any number of intermediate relay stations to handle session flows of PDUs. As PDUs arrive, the ingress station may determine and add scheduling information to the PDUs before they are delivered to the downstream intermediate relay stations or egress stations. The scheduling information is used by the downstream stations to schedule the PDUs for further delivery. The scheduling information may also be used by the egress station to schedule the PDUs for delivery. The scheduling information added to the PDU by the ingress station bears on a QoS class associated with the PDU, a deadline for the egress station to deliver the PDU, or a combination thereof.
摘要:
A method and apparatus are provided for error correction in a communication system employing Orthogonal Frequency Division Multiplexing. When a remote unit receives an OFDM symbol, a retransmission indicator bit is examined to determine whether the symbol is an original symbol or a retransmitted symbol. If it is a retransmitted symbol and the remote unit has a corresponding symbol stored in memory, then the received symbol is soft-combined with the stored symbol. Each packet in the symbol, either the received symbol if original or the soft-combined symbol if retransmitted, is examined by the remote unit. If the remote unit determines that a particular packet is intended for the remote unit, but can not determine the contents of the payload of the packet, the remote unit sends a retransmission request to the base station for retransmission of the symbol. The base station determines whether the entire symbol or merely the packet should be retransmitted, based on such considerations as the size of the packet or whether there are additional requests for the symbol. The invention allows both soft-symbol combining and Automatic Repeat Request to be used as error correction techniques.
摘要:
An RF radio receiver utilizing wideband RF technology, a wideband digital IF (channelizer) tuner, a common digitizing rate, and multi-user detection (MUD) processes a superposed RF signal to allow simultaneous reception of two or more RF signals sharing overlapping frequency spectrum (RF bandwidth). The RF radio receiver is particularly effective for two or more RF signals of differing RF channel bandwidth and can also receive signals which accord to different air interface standards. The use of a common digitizing rate provides for oversampling of at least one of the RF signals for more accurate decoding and allows for a synchronized signal (i.e. at a common rate) to be used in decoding, and in particular multi-user decoding of other RF signals.
摘要:
A method is provided for adapting modulation schemes to changing channel quality with reduced overhead signalling. A remote unit measures the channel quality of a radio channel along which a signal from a base station reached the remote unit. Based on the channel quality, the remote unit determines a desired set of transmission parameters from a list of sets of transmission parameters. The remote unit determines a difference in position within the list between the current set of transmission parameters and the desired set of transmission parameters. The remote unit transmits the difference to the base station, which selects a new set of transmission parameters using the current set of transmission parameters and the difference. The method requires little signalling between the remote unit and the base station, and is particularly beneficial in communication systems employing many sub-carriers, such as OFDM systems.
摘要:
Aspects of global positioning system (GPS) technology and cellular technology are combined in order to provide an effective and efficient position location system. In a first aspect of the invention, a cellular network is utilized to collect differential GPS error correction data, which is forwarded to a mobile terminal over the cellular network. The mobile terminal receives this data, along with GPS pseudoranges using a GPS receiver, and calculates its position using this information. According to a second aspect, when the requisite number of GPS satellites are not in view of the mobile terminal, then a GPS pseudosatellite signal, broadcast from a base station of the cellular network, is received by the mobile terminal and processed as a substitute for the missing GPS satellite signal. A third aspect involves calculating position using GPS when the requisite number of GPS satellites are in view of a GPS receiver, but when the requisite number of GPS satellites are not in view of the GPS receiver, then position is calculated using the cellular network infrastructure. When the requisite number of GPS satellites come back into view of the GPS receiver, then position is again calculated using GPS. A fourth aspect involves using cellular signals already being transmitted from base stations to terminals in a cellular network to calculate a round trip delay, from which a distance calculation between the base station and the terminal can be made. This distance calculation substitutes for a missing GPS satellite signal.