Abstract:
A semiconductor integrated circuit for the processing of conditional access television signals comprises an input interface for receiving encrypted television signals and an output interface for output of decrypted television signals. Control signals broadcast with the television signals include control words and common keys. Entitlement messages are received in encrypted form, encrypted according to a secret key unique to each semiconductor integrated circuit. The input interface is connected to a decryption circuit whereby the only manner of providing the common keys to the circuit are in encrypted form encrypted according to the secret key. Due to the monolithic nature of the circuit, no secrets are exposed and the system is secure. Alternatively, the entitlement messages are encrypted for decryption with the common keys and a unique ID stored in the circuit is compared with an ID in a received entitlement message. Only if the received and stored IDs match can the rights be stored and used.
Abstract:
A monolithic semiconductor integrated circuit is provided for selectively encrypting or decrypting data transmitted between one of a plurality of devices on the circuit and an external memory. Two series of data pathways connect the devices and the external memory. The first series of data pathways passes through a cryptographic circuit causing data to be encrypted or decrypted, and the other series of data pathways provides an unhindered route. When a data access request is made by a device, the data is selectively routed along one of the two series of data pathways according to the identification of the device making the data access request. In one example, if data is transmitted from a device to the external memory, the data is selectively encrypted before being stored in the external memory if the device transmitting the data is identified as secure. Then, when that data is retrieved from the external memory by a second device, the data is selectively decrypted only if the second device is identified as secure.
Abstract:
A semiconductor integrated circuit for the processing of conditional access television signals that includes an input interface for receiving encrypted television signals and an output interface for output of decrypted television signals. The semiconductor integrated circuit is provided with some functionality restricted in some way by preventing one or more hardware circuit elements from operating, such as an MPEG decoder, display engine, IO ports or main CPU. To enable the functionality, a subscriber must pay for a service and then receives an encrypted message broadcast to the semiconductor integrated circuit that is decrypted and instructs functionality to be turned on or off.
Abstract:
An embodiment comprises a semiconductor integrated circuit for restricting the rate at which data may be accessed from an external memory by a device coupled to the circuit. The rate of data access is restricted if the data access satisfies one or more conditions. For example, one of the conditions is that the device which is requesting the data is insecure. Another condition is that the requested data is privileged. A data access monitor is provided to monitor data accesses and to is arranged to generate an access signal to indicate whether the conditions are satisfied or not. A bandwidth comparator determines whether data access exceeds a threshold and, if so, the semiconductor integrated circuit is impaired to prevent further data access.
Abstract:
A semiconductor integrated circuit for use in direct memory access (DMA) has two sources which communicate with a bus through a bus interface. A DMA access signal generator is coupled to the bus interface and asserts a DMA access output signal at a DMA access signal pin whenever either of the sources requires a DMA access. The need for separate DMA access signal pins for each of the two sources is thereby avoided. With targets on two separate integrated circuits, a single DMA access pin can be used for the two targets, while chip select signals at chip select pins on the source integrated circuit indicate which of the two targets is intended for the DMA access.
Abstract:
Aspects of a method and system for allowing no code download in a code download scheme are provided. A system-on-a-chip (SoC) may comprise a security processor, a ROM, and a one-time-programmable (OTP) memory. The security processor may enable fetching code from a restricted function portion of the ROM. The restricted functions may comprise code for booting up the SoC and code that prevents enabling security algorithms within the SoC. The security processor may then enable booting up of at least a portion of the SoC based on the fetched code. The remaining portion of the ROM may comprise code for downloading security code from an external memory, such as a FLASH memory, to an internal memory, such as a RAM, to boot up the SoC. Access to the restricted function portion or the remaining portion of the ROM is based on at least one bit from the OTP memory.
Abstract:
Methods, devices, systems and computer program products are provided to facilitate cryptographically secure retrieval of secret information that is embedded in a device. The embedded secret information can include a random number that is not custom-designed for any specific requestor of the secret information. Upon receiving a request for the embedded secret information, an encrypted secret is provided to the requestor that enables the recovery of the embedded secret information by only the requestor. Moreover, a need for maintenance of a database of the embedded secret information and the associated requestors is eliminated.
Abstract:
Methods, devices, systems and computer program products are provided to facilitate cryptographically secure retrieval of secret information that is embedded in a device. The embedded secret information can include a random number that is not custom-designed for any specific requestor of the secret information. Upon receiving a request for the embedded secret information, an encrypted secret is provided to the requestor that enables the recovery of the embedded secret information by only the requestor. Moreover, a need for maintenance of a database of the embedded secret information and the associated requestors is eliminated.
Abstract:
A secondary boot code may be copied to memory during execution of a primary boot code, and executing the copied secondary boot code after completion of execution of said primary boot code. Access to the primary and said secondary boot code may be restricted during execution of the primary boot code and the copied secondary boot code. The copied secondary boot code may be verified after the secondary boot code is copied to the memory. Access to the primary boot code may be blocked or barred during execution of the copied secondary boot code. Access to the secondary boot code may also be blocked or barred after completion of execution of the copied secondary boot code. The memory may comprise double-data-rate synchronous dynamic random access memory (DDR). The primary and/or the secondary boot code may reside or be stored in FLASH memory.
Abstract:
A semiconductor integrated circuit for the processing of conditional access television signals, the circuit including an input interface for receiving encrypted television signals and an output interface for output of decrypted television signals. Control signals broadcast with the television signals include control words and common keys. The common keys are received in encrypted form, encrypted according to a secret key unique to each semiconductor integrated circuit. The input interface is connected to a decryption circuit whereby the only manner of providing the common keys to the circuit are in encrypted form encrypted according to the secret key. Due to the monolithic nature of the circuit, no secrets are exposed and the system is secure.