Abstract:
Systems, methods and apparatus described herein include features that enable efficient management of keep-alive messages utilized to maintain IP addresses and/or PDN connections associated with idle data traffic channels. An access terminal may consolidate keep-alive messages for idle data traffic channels, reducing the number of keep-alive messages transmitted. An access terminal may select which idle data traffic channels to maintain, and may transmit a consolidated keep-alive message for associated IP addresses and/or PDN connections. Timers may be associated with PDN connections and sub-timers may be associated with IP addresses associated with a PDN connection. Keep-alive messages can be consolidated based on the timers, sub-timers and/or combination of timers and sub-timers. In a complementary method, a PDN gateway or other network node cooperates with access terminals to reduce network traffic. In another complementary method, the PDN gateway or other network node synchronizes the timers and/or sub-timers provided with an access terminal.
Abstract:
A method is performed by a device. The method includes determining whether the device is allowed to attach to an operator network based at least partially on whether all access point names in a minimum access point name list are enabled in the device. The device allows itself to attach to the operator network if it is determined that the device is allowed to attach to the operator network. The device prevents itself from attaching to the operator network if it is determined that the device is not allowed to attach to the operator network. The device can wirelessly receive a command to disable an access point name in the device. If an access point name on a detach access point name list is disabled, then the device detaches from the operator network and prevents itself from reattaching until an integrated circuit card in the device is removed and replaced.
Abstract:
A method enables a user equipment (UE) intervention to reduce a network-initiated Quality of Service (QoS) interruption time or a disruption of the network-initiated QoS, while avoiding application intervention. The method includes communicating with a source radio access network (RAN) in accordance with a network-initiated quality of service (QoS) profile. The method also includes transferring to a target RAN. The method further includes triggering, by a user equipment (UE), a QoS setup to reestablish the QoS profile.
Abstract:
Internet protocol (IP) continuity is fundamentally not possible when a user equipment (UE) moves from an evolved packet core (EPC) radio access technology (RAT) to a non-EPC RAT. However, there are instances when it is beneficial to not completely release an EPC IP context, such as when the UE moves to the non-EPC RAT for only a short period of time. The UE may retain an EPC IP context in a suspended state while the UE is in the non-EPC RAT, and revive the context when the UE returns to the EPC RAT. Accordingly, a method, an apparatus, and a computer program product for maintaining an EPC context at a UE are provided. The apparatus suspends and retains the EPC context when moving from an EPC capable network to a non-EPC capable network, and resumes the suspended EPC context upon returning to the EPC capable network.
Abstract:
Aspects disclosed herein relate to enabling fallback to a second data service based on whether one or more fallback conditions are present before or during establishing a data context with a first data service. In one example, a UE may be configured to determine whether one or more fallback conditions are present before or during establishing a data session with a first data service. The UE may be further configured to prohibit further attempts to establish a data context to access the first data service based on the determination of the presence of at least one of the one or more fallback conditions. Some aspects disclosed herein relate to enabling fallback to a HRPD data service based on whether one or more fallback conditions are present before or during establishing a data context with an eHRPD data service.
Abstract:
Aspects of the present disclosure provide techniques for preventing loss of IP continuity when transitioning between networks. Certain aspects provide methods that generally include initiating a first timer upon attempting to transition from a first RAT network to a second RAT network during an IP session and initiating a second timer if a channel in the second RAT network is successfully acquired. According to aspects, a device may transfer context of the IP session to the second RAT network if a session is successfully negotiated in the second network prior to expiration of the second timer and the first and second networks share a common core network for IP services.
Abstract:
The present invention provides a method to enhance the RACH message transmission of a wireless communication systems. Therefore the known RACH procedure for uplink transmission is extended by additional steps in order to allow the usage of adaptive transmission parameters for uplink transmissions, preferably the usage of adaptive modulation and coding (AMC). This is advantageous because studies in high-speed downlink packet access show the possibility to increase the data rate of a downlink shared channel. The method according to the invention introduces a new RACH message preamble and enables the base station to estimate suitable adaptive transmission parameters like an AMC setting according to the current transmission conditions which are used during the RACH message transmission.
Abstract:
Aspects disclosed herein relate to enabling fallback to a second data service based on whether one or more fallback conditions are present before or during establishing a data context with a first data service. In one example, a UE may be configured to determine whether one or more fallback conditions are present before or during establishing a data session with a first data service. The UE may be further configured to prohibit further attempts to establish a data context to access the first data service based on the determination of the presence of at least one of the one or more fallback conditions. Some aspects disclosed herein relate to enabling fallback to a HRPD data service based on whether one or more fallback conditions are present before or during establishing a data context with an eHRPD data service.
Abstract:
A method for optimizing data retry mechanisms is described. The method includes attempting to originate a data call on an evolved high rate packet data system. The method also includes determining that originating the data call has failed. A type of failure that caused the data call to fail is determined. The frequency of data call origination attempts is reduced based on the type of failure.
Abstract:
An apparatus operable in a communication system and having the capability to discard an internet protocol address is described. The apparatus is configured to receive an assignment of a first internet protocol address of a first type for a first application and a second internet protocol address of a second type for a second application for a data connection to a network. The apparatus is also configured to determine that the apparatus is currently not able to handle both the first internet protocol address and the second internet protocol address. The apparatus is further configured to determine an internet protocol address to discard, and discard the determined internet protocol address.