Abstract:
A system comprises a robotic arm operable to extend between the legs of a dairy livestock located in a milking stall of a rotary milking platform, a camera operable to generate an image signal corresponding to a rear of the dairy livestock, and a controller communicatively coupled to the robotic arm and the camera. The controller determines whether a milking claw is attached to the teats of the dairy livestock by receiving the image signal generated by the camera and processing the image signal. If it is determined based on the image signal that the milking claw is not attached, the controller controls the robotic arm to extend between the legs of the dairy livestock. If it is determined based on the image signal that the milking claw is attached, the controller controls the robotic arm not to extend between the legs of the dairy livestock.
Abstract:
A system comprises a memory operable to store light intensity information for a plurality of neighboring pixels of an image that includes a dairy livestock. The system further comprises a processor communicatively coupled to the memory. The processor determine that a difference between the light intensity information for a first pixel of the plurality of neighboring pixels and at least some of the other neighboring pixels exceeds a threshold. The processor further discards the first pixel and determines a location of a teat of the dairy livestock based on the image, excluding the discarded pixel.
Abstract:
A spray tool coupled to a robotic arm includes a linear member, a first spray nozzle and a second spray nozzle. The linear member rotates about an axis that is perpendicular to the robotic arm. The linear member has a perimeter that lies within an outer perimeter of the robotic arm when the robotic arm extends between the legs of a dairy livestock. The first spray nozzle is coupled to the linear member proximate a first end of the linear member. The second spray nozzle is coupled to the linear member proximate a second end of the linear member.
Abstract:
A system comprises a memory operable to store light intensity information for a plurality of neighboring pixels of an image that includes a dairy livestock. The system further comprises a processor communicatively coupled to the memory. The processor determine that a difference between the light intensity information for a first pixel of the plurality of neighboring pixels and at least some of the other neighboring pixels exceeds a threshold. The processor further discards the first pixel and determines a location of a teat of the dairy livestock based on the image, excluding the discarded pixel.
Abstract:
A method, comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the shut-off valve corresponding to the inlet to close, and by causing the drain valve corresponding to the inlet to open.
Abstract:
An apparatus includes a carriage, platform, extension member, brush tool member, brush tool, and controller. The carriage is coupled to and moves along a track. The platform has a length orthogonal to and greater than its width and transverse to the lateral direction when in an operational state. The platform pivots such that its front and back ends move vertically in opposite directions. The extension member is movably coupled to the platform and its longitudinal axis is parallel to the platform's length. The back end of the brush tool member is coupled to the front end of the extension member. The brush tool is coupled to the front end of the brush tool member. The controller configured moves the extension member towards the front end of the platform such that a portion of the brush tool extends beyond the front end of the platform.
Abstract:
An apparatus includes a carriage, a foundation, a pivot coupler, a platform, a coupler, a linear actuator, an extension member, a spray tool member, and a controller. The carriage moves along the track. The foundation is coupled to the carriage. The pivot coupler is coupled to the foundation. The coupler is coupled to the platform. The coupler couples the platform to the pivot coupler. The extension member is coupled to the linear actuator. The spray tool member is coupled to the extension member. The controller is configured to cause the carriage to move along the track, the platform to pivot, and the extension member to move in the lengthwise direction to position a spray tool coupled to the spray tool member at a spray position from which the spray tool may discharge a solution to a teat of a dairy livestock.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock includes determining that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track that has a carriage carrying a robotic arm. The method continues by communicating a first signal that causes operation of a first actuator such that the carriage moves along the track in relation to the rotary milking platform and independent of any physical coupling between the carriage and the rotary milking platform and in a direction corresponding to a direction of rotation of the rotary milking platform. The method concludes by communicating one or more additional signals that causes operation of one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
An apparatus includes a carriage, platform, extension member, brush tool member, brush tool, and controller. The carriage is coupled to and moves along a track. The platform has a length orthogonal to and greater than its width and transverse to the lateral direction when in an operational state. The platform pivots such that its front and back ends move vertically in opposite directions. The extension member is movably coupled to the platform and its longitudinal axis is parallel to the platform's length. The back end of the brush tool member is coupled to the front end of the extension member. The brush tool is coupled to the front end of the brush tool member. The controller configured moves the extension member towards the front end of the platform such that a portion of the brush tool extends beyond the front end of the platform.
Abstract:
A method includes housing a dairy livestock in a stall portion of a milking box and retrieving, by a robotic attacher, a cup. For each of a plurality of teats of a dairy livestock, the method further uses the robotic arm to perform the steps of attaching the cup to the teat, detaching the cup from the teat, and maintaining the cup within the stall portion of the milking box from the time that the cup is attached to the first teat of the dairy livestock through the time that the cup is attached to a last teat of the dairy livestock. The method concludes by retracting the cup into an equipment area of the milking box after detaching the cup from the last teat of the dairy livestock.