Abstract:
A system and method for reducing energy consumption in a wireless network. In one embodiment, a system includes a network coordinator configured to manage access to a wireless network. The network coordinator includes a controller. The controller is configured to define a channel hopping list that specifies on which channel a beacon signal is transmitted in each slot frame of the wireless network. The controller is also configured to set a number of time slots in each slot frame based on a length of the channel hopping list. The controller is further configured to transmit a first beacon signal in each slot frame on a channel specified by the channel hopping list. The number of slots in each slot frame causes the first beacon signal to be transmitted on a same channel in each slot frame.
Abstract:
A method includes receiving a first plurality of symbols comprising complex portions. The method further includes applying conjugate symmetry to the first plurality of symbols, producing a second plurality of symbols comprising no complex portions. The method further includes transforming the second plurality of symbols using an inverse fast Fourier transform, producing a third plurality of symbols. The method further includes interpolating the third plurality of symbols, generating a short training field comprising at least one real portion of the third plurality of symbols, generating a long training field comprising at least one real portion of the third plurality of symbols, and transmitting the short training field and long training field in a WPAN.
Abstract:
A network coding system. A packet decoding engine receives a number of received packets. A packet repository is coupled to the decoding engine to temporarily store the received packets. The packet decoding engine is configured to generate a decoding matrix by forming a sub-matrix by selecting columns of a network code matrix that have indices that are the same as the indices of the encoded packets that correspond to the selected received packets. The packet decoding engine is also configured to invert the sub-matrix to form the decoding matrix and multiply the received packet matrix by the decoding matrix to generate a recovered matrix where each column corresponds to a decoded packet.
Abstract:
An orthogonal frequency division multiplexing (OFDM) receiver includes detection logic, offset generation logic, tone erasure logic, and correction generation logic. The detection logic is configured to detect a signal containing a block of samples that includes a narrowband interferer from a communication channel. The offset generation logic is configured to align a frequency of the narrowband interferer to a center of a subcarrier frequency of the communication channel to produce an offset signal thereby introducing inter-carrier interference (ICI). The tone erasure logic is configured to remove the subcarrier frequency from the offset signal to produce an interferer erased offset signal. The correction generation logic is configured to remove the ICI to produce an interferer erased signal.
Abstract:
A networking device includes a packet header protect generator, a transmitter, a receiver, a decoder and router. The transmitter transmits a data packet to the receiver. The data packet includes a data packet header. The packet header protection generator is arranged to toggle selected bits of a protected portion of the data packet header and generate a data integrity signature. The receiver receives the data packet and generates a received data integrity signature. The decoder computes a locally computed data integrity signature in response to the protected portion of the received data packet header. The locally computed data integrity signature is compared with the received data integrity signature. The router selects a portion of a routing path in response to whether a data packet forwarding destination includes a decoder arranged to compute a locally computed data integrity signature.
Abstract:
A method of communicating in a wireless network including a plurality of nodes having communications devices including a first node, wherein at least one node utilizes a first physical layer (PHY) modulation, and at least one other node utilizes a second PHY modulation different from the first PHY modulation. The first node receives a PHY frame transmitted by one of the plurality of nodes, and identifies a PHY modulation type selected from the first PHY modulation and the second PHY modulation used in the PHY frame or to be used in a subsequently to be received PHY frame or frame portion. The first node decodes the PHY frame or the subsequently to be received PHY frame or frame portion using the PHY modulation type identified in the identifying step.
Abstract:
A wireless network receiver includes a detection module that uses preamble data in a data frame for signal processing functions and the detection module is configured to adjust the number of preamble data bits that are used based on the power of a received signal.
Abstract:
An integrated circuit includes logic configured to generate scrambling sequences, each based on a different scrambling seed, for a smart-utility-network data packet communication. A Hamming distance between any two scrambling sequences is half the length of a PSDU of the data packet or greater.
Abstract:
A network coding method includes receiving a plurality of input packets each having a packet length. Encoding the plurality of input packets by applying a convolutional code across symbols in corresponding positions of the plurality of input packets obtaining a number of encoded packets. The number of encoded packets obtained being more than the number of input packets.
Abstract:
Embodiments include methods of powerline communications using a preamble with band extension is provided. A method may include receiving a packet data unit PDU. Bit-level repetition is applied to at least a portion of the PDU to create a repeated portion. Interleaving is performed per a subchannel. Pilot tones are inserted in the interleaved portion. Each each data tone is modulated with respect to a nearest one of the inserted pilot tones. The PDU is transmitted over a power line