Abstract:
A control system for a variable area fan nozzle (VAFN) is disclosed. The VAFN may have a plurality of petals and may be for use with a gas turbine engine. The control system may include a primary system configured to acquire primary data indicative of an operating condition of the VAFN, a secondary system configured to acquire secondary data indicative of a current operating condition of the gas turbine engine, and a control module in operative communication with the primary system and the secondary system. The control module may be configured to: determine a nozzle area of the VAFN based at least in part on the primary data, adjust the determined nozzle area based on the secondary data, and position the plurality of petals according to the adjusted nozzle area.
Abstract:
Bleed air systems for use with aircrafts and related methods are disclosed. An example apparatus includes a turbo-compressor including a compressor has a compressor inlet fluidly coupled to a low-pressure compressor of an aircraft engine and an intermediate port of a high-pressure compressor of the aircraft engine. The compressor inlet to receive fluid from either the low-pressure compressor or the high-pressure compressor based on a first system parameter of the aircraft. A turbine has a turbine inlet fluidly coupled to the intermediate port of the high pressure compressor and a high-pressure port of the high pressure compressor of the aircraft engine. The turbine inlet to receive fluid from either the intermediate port of the high-pressure compressor or the high-pressure port of the high-pressure compressor based on a second system parameter of the aircraft.
Abstract:
Sound-attenuating heat exchangers and methods of exchanging heat and attenuating sound within sound-attenuating heat exchangers. The sound-attenuating heat exchangers include a base region, which defines a first base side and a second base side, and a plurality of elongate fluid conduits, which are at least partially defined by the base region and configured to contain a cooled fluid stream. The sound-attenuating heat exchangers also include a plurality of heat transfer-enhancing structures, which extend from the first base side and are configured to exchange thermal energy with a cooling fluid stream, and a sound-attenuating region, which extends from the second base side. The sound-attenuating region includes a plurality of resonator cells configured to attenuate sound and a plurality of resonator cell openings. Each resonator cell opening opens from a corresponding resonator cell toward the plurality of heat transfer-enhancing structures. The methods include methods of operating the sound-attenuating heat exchanger.
Abstract:
Shape memory alloy (SMA) actuators and thermal management systems including the same. An SMA actuator includes an SMA lifting tube and a process fluid conduit configured to convey a process fluid through the SMA lifting tube. The SMA actuator assumes a conformation that is based on the temperature of the process fluid. The SMA lifting tube includes a first end and a second end configured to translate relative to the first end at least partially along a lateral direction. A thermal management system is configured to regulate a temperature of a process fluid. The thermal management system includes a heat exchanger that at least partially defines a heat transfer region, a process fluid conduit configured to convey the process fluid through the heat transfer region, and an actuator assembly including the SMA actuator. The actuator assembly is configured to selectively position the heat exchanger within a thermal management fluid flow.
Abstract:
A thermal management system includes a heat exchanger and a housing that receives the heat exchanger. The heat exchanger defines a heat transfer region within which thermal exchange occurs between a process fluid and a thermal management fluid. The thermal management system further includes a process fluid conduit to convey the process fluid through the heat transfer region and an actuator assembly configured to position the heat exchanger relative to the housing. The actuator assembly is configured to selectively assume a position between a stowed position and a deployed position. When the actuator assembly is in the deployed position, the heat transfer region extends within a flow of the thermal management fluid such that the process fluid flow flows in heat exchange relation with the thermal management fluid flow. In some such embodiments, the actuator assembly automatically transitions between the stowed position and the deployed position.
Abstract:
A shape memory alloy (SMA) actuator includes an SMA lifting tube that extends between a first end and a second end and that is configured to be in thermal communication with a process fluid during operative use of the SMA actuator. The SMA actuator is configured to assume a conformation among a plurality of conformations defined between and including a first conformation and a second conformation based, at least in part, on the temperature of the process fluid that is in thermal communication with the SMA lifting tube. The SMA lifting tube is configured such that the second end translates relative to the first end at least partially along a lateral direction that is at least substantially perpendicular to at least a portion of the SMA lifting tube between the first end and the second end as the SMA actuator transitions between the first conformation and the second conformation.
Abstract:
A compression molding assembly for molding a honeycomb core, including a plurality of cells defined by a plurality of walls, of a blocker door is provided. The compression molding assembly includes a ram plate comprising a plurality of openings defined therethrough and a plurality of core inserts coupled to the ram plate such that the plurality of core inserts are configured to form the honeycomb core of the blocker door. Each core insert is removably coupled with a respective opening of the plurality of openings such that each core insert is configured to form a respective cell of the plurality of cells.
Abstract:
A compact inlet design including a single bulkhead and/or an acoustic panel extending into nacelle lip region for noise reduction. The compact inlet is used with a low power fluid ice protection system capable of preventing ice build-up on the acoustic panel in the nacelle lip region.