Abstract:
Wireless communication between a base station and at least one user equipment comprises the following. Each user equipment periodically measures channel quality of communication with the base station and transmits a channel quality indicator to the base station. The base station schedules communication with the at least one user equipment based upon the periodically transmitted channel quality indicators.
Abstract:
A transmission of information from a secondary to a primary node occurs in a plurality of transmission instances which are logical time durations. A secondary node receives an allocation of periodic transmission instances for a scheduling request indicator (SRI) and an allocation if periodic transmission instances for a sounding reference signal (SRS). In a particular transmission instance allocated for the transmission of both SRS and SRI, the secondary node transmits the SRI without transmitting the SRS if the SRI indicates a pending scheduling request; otherwise, the secondary node transmits the SRS without transmitting the SRI.
Abstract:
User equipment (UE)-initiated accesses within a cellular network are optimized to account for cell size and to reduce signaling overhead. A fixed set of preamble parameter configurations for use across a complete range of cell sizes within the cellular network is established and stored within each UE. A UE located in a given cell receives a configuration number transmitted from a nodeB serving the cell, the configuration number being indicative of a size of the cell. The UE selects a preamble parameter configuration from the fixed set of preamble parameter configurations in response to the received configuration number and then transmits a preamble from the UE to the nodeB using the preamble parameter configuration indicated by the configuration number.
Abstract:
A detailed design of an LTE Link Adaptation function for LTE uplink is disclosed. A new approach for adapting SINR backoff in OLLA is used when serving non-time-sensitive radio bearers without target BLER constraint. A sub-optimal scheduler is also disclosed wherein the SINR measurements at the ILLA input are updated on each TTI for the UEs scheduled in that sub-frame for future UL transmission with a fresher interference measurement from the sub-frame preceding by 8 ms the actual transmission sub-frame. This allows for exploitation of a correlation peak of the interference resulting from HARQ retransmissions. A schedule incorporating these features improves upon, with a minor complexity increase, the spectral efficiency performance of a low-complexity baseline scheduler only based on SINR updates at SRS rate.
Abstract:
A transmission of information from a secondary to a primary node occurs in a plurality of N logical time durations on an uplink channel in a wireless network. A scheme for mapping between logical uplink control channel (PUCCH) resource blocks (RBs) and physical RBs (PRBs) used by PUCCH is described. A logical uplink control resource block index nLRB is derived by the secondary node in response to information from the primary node. The secondary node then maps the logical uplink control resource block index nLRB to a first uplink physical resource block index nPRB,1 of a plurality of uplink physical resource blocks, wherein nPRB,1=nLRB/2 if nLRB is even and nPRB,1=NPRB−ceil(nLRB/2) if nLRB is odd; wherein NPRB is the total number of the plurality of uplink physical resource blocks; and wherein ceil denotes the ceiling operation. The secondary node then transmits an uplink control information in a subframe using one of the plurality of uplink physical resource blocks indexed by nPRB,1.
Abstract:
A wireless device includes a preamble detector configured to identify a plurality of preambles transmitted via a random access channel of a wireless network. The preamble detector includes a noise floor estimator. The noise floor estimator is configured to: estimate, for a given preamble root sequence identified by the preamble detector, a noise floor value as mean energy of received signal samples, excluding detected preamble samples on the give preamble root sequence, below a noise floor threshold assigned to the given preamble root sequence. The noise floor estimator is configured to compute the noise floor threshold as a product of: average energy of the received signal samples less total signal energy contained in each cyclic prefix window in which a preamble is detected using the given preamble root sequence; and a predetermined normalized relative noise floor threshold based on a target false preamble detection rate.
Abstract:
Transmission of random access preamble structures within a cellular wireless network is based on the use of cyclic shifted constant amplitude zero autocorrelation (“CAZAC”) sequences to generate the random access preamble signal. A pre-defined set of sequences is arranged in a specific order. Within the predefined set of sequences is an ordered group of sequences that is a proper subset of the pre-defined set of sequences. Within a given cell, up to 64 sequences may need to be signaled. In order to minimize the associated overhead due to signaling multiple sequences, only one logical index is transmitted by a base station serving the cell and a user equipment within the cell derives the subsequent indexes according to the pre-defined ordering. Each sequence has a unique logical index. The ordering of sequences is identified by the logical indexes of the sequences, with each logical index uniquely mapped to a generating index. When a UE needs to transmit, it produces a second sequence using the received indication of the logical index of the first sequence and an auxiliary parameter and then produces a transmission signal by modulating the second sequence.