摘要:
A near-field light generating device includes: a base having a top surface; a waveguide that allows laser light to propagate therethrough and is disposed above the top surface of the base; and a surface plasmon generating element that is disposed above the top surface of the base so as to adjoin the waveguide in a direction parallel to the top surface of the base. The waveguide has a side surface that faces the surface plasmon generating element. The surface plasmon generating element includes: a coupling part that is opposed to a part of the side surface of the waveguide with spacing therebetween and causes excitation of a surface plasmon by coupling with evanescent light occurring from the part of the side surface; and a near-field light generating part that generates near-field light based on the surface plasmon excited at the coupling part.
摘要:
A thermally assisted magnetic head includes: a slider having a medium-facing surface; and a surface-emitting semiconductor laser. The slider has: a slider substrate, on which part of the medium-facing surface is formed; and a magnetic head portion, on which another part of the medium-facing surface is formed, and which has a first surface in contact with a head stacking surface of the slider substrate and a second surface opposite the first surface. The magnetic head portion has: a main magnetic pole that generates a write magnetic field from an end face on the side of the medium-facing surface; an optical waveguide core extending along the first surface and having a light exit surface at the medium-facing surface; and a diffraction grating, which is provided in the optical waveguide core or further towards the second surface than the optical waveguide core, and the refractive index of which varies periodically along the direction in which the optical waveguide core extends. The surface-emitting semiconductor laser is provided opposing the second surface so that emission light from the surface-emitting semiconductor laser is incident onto the diffraction grating, and the diffraction grating causes at least part of emission light from the surface-emitting semiconductor laser to be optically coupled to the optical waveguide core.
摘要:
A method for manufacturing a thermally-assisted magnetic recording head is provided, in which joined are: a light source unit that includes a light source having a surface including a light-emission center on the joining surface side of a unit substrate; and a slider that includes an optical system having a light-receiving end surface reaching a back surface opposite to the opposed-to-medium surface. This method utilizes “semi-active alignment” that uses an alignment light, and comprises steps of: causing a light to enter the light source from a surface opposite to the light-emission center; detecting the light that has passed through the light source and is emitted from the light-emission center to align the light-emission center with the light-receiving end surface of the slider; and bonding the light source unit to the slider. This manufacturing method can achieve the alignment with a sufficiently high alignment accuracy in a short processing time.
摘要:
Provided is a manufacturing method of heat-assisted magnetic recording head, in which a light source unit can be easily joined to a slider with sufficiently high accuracy, under avoiding the excessive mechanical stress. The manufacturing method comprises the steps of: moving relatively the light source unit and the slider, while applying a sufficient voltage between an upper electrode of the light source and an electrode layer provided in the slider; and setting the light source unit and the slider in desired positions in a direction perpendicular to the element-integration surface of the slider substrate. The desired positions are positions where the light source just emits due to a surface contact between: the protruded portion of the lower surface of the light source; and the upper surface of the electrode layer, which is a portion of the wall surface of a step formed on the head part.
摘要:
A thermally assisted magnetic head includes: a slider having a medium-facing surface; and a surface-emitting semiconductor laser. The slider has: a slider substrate, on which part of the medium-facing surface is formed; and a magnetic head portion, on which another part of the medium-facing surface is formed, and which has a first surface in contact with a head stacking surface of the slider substrate and a second surface opposite the first surface. The magnetic head portion has: a main magnetic pole that generates a write magnetic field from an end face on the side of the medium-facing surface; an optical waveguide core extending along the first surface and having a light exit surface at the medium-facing surface; and a diffraction grating, which is provided in the optical waveguide core or further towards the second surface than the optical waveguide core, and the refractive index of which varies periodically along the direction in which the optical waveguide core extends. The surface-emitting semiconductor laser is provided opposing the second surface so that emission light from the surface-emitting semiconductor laser is incident onto the diffraction grating, and the diffraction grating causes at least part of emission light from the surface-emitting semiconductor laser to be optically coupled to the optical waveguide core.
摘要:
A thermally-assisted magnetic recording head is provided, in which the light-source output can be adjusted according to its variation by environmental influences and over time. The head comprises: a light source; a write head element provided in a element-integration surface; an optical system provided in the element-integration surface and configured to guide a light emitted from the light source to the vicinity of one end of the write head element; and a light detector for monitoring the light-source output, provided in the element-integration surface and comprising a light-receiving surface covering an area directly above at least a portion of the optical system. This light detector with such a light-receiving surface can detect a leakage light emitted from the optical system as a monitoring light. Therefore, feedback adjustment of the light-source output can be realized to stabilize the intensity of light for thermal-assist applied to a magnetic recording medium.
摘要:
A near-field light generating device includes: a waveguide having a groove that opens in the top surface; a clad layer disposed on the top surface of the waveguide and having an opening that is contiguous to the groove; a near-field light generating element accommodated in the opening; and a buffer layer interposed between the near-field light generating element and each of the waveguide and the clad layer in the groove and the opening. The near-field light generating element includes: first and second side surfaces that decrease in distance from each other toward the groove; an edge part that connects the first and second side surfaces to each other and is opposed to the groove with the buffer layer therebetween; and a near-field light generating part that lies at one end of the edge part and generates near-field light.
摘要:
A thermally assisted magnetic head according to the present invention includes: a medium-facing surface, a main magnetic pole provided on the medium-facing surface, and a plasmon antenna provided on the medium-facing surface in the vicinity of the main magnetic pole, wherein the plasmon antenna is shaped as a triangular flat plate having first, second and third corners, such that the distance from the first corner to the main magnetic pole is shorter than the distance from the second corner to the main magnetic pole and the distance from the third corner to the main magnetic pole, and the interior angle α of the first corner, the interior angle β of the second corner and the interior angle γ of the third corner satisfy relationships α
摘要:
Provided is a heat-assisted magnetic recording head constituted of a light source unit and a slider, which can be easily joined to each other with sufficiently high accuracy of joining position. The slider comprises a head part including a waveguide having an incident center on its end. The surface including an emission center of the light source is protruded from a joining surface of the unit substrate. And a step is provided on an end surface of the head part. The protruded portion of a lower surface of the light source has a surface contact with a wall surface of the step. Further, the distance between the wall surface of the step and the incident center of the waveguide is set to be equal to the distance between the emission center of the light source and the protruded portion of the lower surface of the light source.
摘要:
When first and second near-field light-generating portions are irradiated with laser light or other energy rays, near-field light is generated at the tips of both the near-field light-generating portions. By means of the near-field light thus generated, a magnetic recording medium opposing the medium-opposing surface is heated, and the coercivity of the magnetic recording medium is lowered. Since at least a portion of the main magnetic pole is positioned within the spot region including the region between the first and second near-field light-generating portions, the tips of both the near-field light-generating portions and the main magnetic pole can be brought extremely close together, and high-density recording can be performed.