摘要:
In a lithium-ion secondary battery of the present invention, the electrical resistivity of the mixture of a positive electrode active material, an electrically conductive member, and a binder is 0.1 Ωcm or more but 1 Ωcm or less. The positive and negative electrodes each have an electrical capacity of 10 mAh or more but 50 mAh or less per volume of a rectangular parallelepiped that has a 1 cm2 square base on a face of the electrode of one polarity facing the electrode of the other polarity and that has a height equal to the thickness of the electrode of the one polarity at the square base. Used as the negative electrode thereof is a negative electrode formed by sintering graphite powder, non-graphitizing carbon, and fibrous powder retained in the pores of a porous metal structure in an inert gas atmosphere at a temperature of between 600 and 1000° C.
摘要:
In a lithium-ion secondary battery of the present invention, the electrical resistivity of the mixture of a positive electrode active material, an electrically conductive member, and a binder is 0.1 Ωcm or more but 1 Ωcm or less. The positive and negative electrodes each have an electrical capacity of 10 mAh or more but 50 mAh or less per volume of a rectangular parallelepiped that has a 1 cm2 square base on a face of the electrode of one polarity facing the electrode of the other polarity and that has a height equal to the thickness of the electrode of the one polarity at the square base. Used as the negative electrode thereof is a negative electrode formed by sintering graphite powder, non-graphitizing carbon, and fibrous powder retained in the pores of a porous metal structure in an inert gas atmosphere at a temperature of between 600 and 1000° C.
摘要:
Provided is a positive electrode active material giving nonaqueous-electrolyte secondary batteries superior in cycle characteristics. The positive electrode active material according to the present invention includes a lithium-containing composite metal oxide having the composition represented by the following General Formula (1): LizFe1-xMxP1-ySiyO4 (1) (wherein M is at least one metal element selected from Zr, Sn, Y, and Al, 0.05 z>0.9 to 0.75 or 0.25 to 0.1>z>0; the positive electrode active material has two crystalline phases of the lithium-containing composite oxides represented by the following General Formulae (2) and (3) when 0.9 to 0.75>z>0.25 to 0.1: LiaFe1-xMxP1-ySiyO4 (2) (wherein 0.75 to 0.9≦a≦1.00, 0.05
摘要:
Provided is a positive electrode active material giving nonaqueous-electrolyte secondary batteries superior in cycle characteristics. The positive electrode active material according to the present invention includes a lithium-containing composite metal oxide having the composition represented by the following General Formula (1): LizFe1-xMxP1-ySiyO4 (1) (wherein M is at least one metal element selected from Zr, Sn, Y, and Al, 0.05 z>0.9 to 0.75 or 0.25 to 0.1>z>0; the positive electrode active material has two crystalline phases of the lithium-containing composite oxides represented by the following General Formulae (2) and (3) when 0.9 to 0.75>z>0.25 to 0.1: LiaFe1-xMxP1-ySiyO4 (2) (wherein 0.75 to 0.9≦a≦1.00, 0.05
摘要:
A positive active material according to the present invention used in a nonaqueous secondary battery, includes a lithium-containing transition metal oxide containing manganese, as a crystal structure of a main crystalline phase, and a sub oxide and tin (IV) oxide, each of which having an oxygen arrangement identical to that of the lithium-containing transition metal oxide however has a different element composition, the sub oxide and tin (IV) oxide being included in a state in which presence of the sub oxide and tin (IV) oxide is confirmable by diffractometry.
摘要:
A method of producing a positive electrode active substance comprising steps of: dissolving a lithium source, an M source, a phosphorus source and an X source in amounts needed to form a lithium-containing composite oxide having an olivine structure and represented by the following general formula (1): LixMyP1−zXzO4 (1) wherein, in the formula, M is at least one kind of element selected from the group of Fe, Ni, Mn, Zr, Sn, Ti, Nb, V, Al and Y; X is at least one kind selected from the group of Si and Al; 0
摘要:
A cathode active material comprising a composition represented by the following general formula (1): LiaM1xM2yM3zPmSinO4 (1) wherein M1 is at least one kind of element selected from the group of Mn, Fe, Co and Ni; M2 is any one kind of element selected from the group of Zr, Sn, Y and Al; M3 is at least one kind of element selected from the group of Zr, Sn, Y, Al, Ti, V and Nb and different from M2; “a” satisfies 0
摘要:
A cathode active material having a composition represented by the following formula (1) LiMn1−xMxP1−ySiyO4 (1) wherein M is at least one kind of element selected from the group consisting of Zr, Sn, Y and Al; x is within a range of 0
摘要:
A cathode active material of the present invention for use in a nonaqueous secondary battery includes: a main crystalline phase including a lithium-containing transition metal oxide containing manganese and having a spinel structure; and a sub crystalline phase which is in a layer shape and which is contained in the main crystalline phase, the sub crystalline phase being identical in oxygen arrangement to the lithium-containing transition metal oxide and different in elementary composition from the lithium-containing transition metal oxide, the main crystalline phase being in an octahedral shape having a plurality of edges, the plurality of edges including a longest edge having a length of not greater than 300 nm.
摘要:
To provide a secondary battery that is capable of shortening injecting time for injecting an electrolytic solution, and infiltrating the electrolytic solution uniformly, during a process for preparing the secondary battery. Also, to provide the secondary battery in which discordance of layers of positive-electrode plates, negative-electrode plates, and separators does not easily occur during a process for laminating them and the following process.A nonaqueous electrolytic solution secondary battery of the present invention comprises: negative-electrode plates which are rectangular; positive-electrode plates which each have a pair of opposed sides shorter than a pair of opposed sides of each negative-electrode plate; separators which each are formed of a porous resin film enclosing each positive-electrode plate; an enclosure which encloses the negative-electrode plates and separators which are laminated alternately, in which a direction of the sides of the negative-electrode plates aligns with a direction of the shorter sides of the positive-electrode plates; and an injection pathway for the nonaqueous electrolytic solution, which the pathway being formed between the negative-electrode plates between which the separator is sandwiched, the pathway being formed at edges of opposed sides of the negative-electrode plates.