Abstract:
A method of actuating a hydraulic latch and a fan duct includes providing a pressurized fluid for actuating a latch, providing a valve to control flow of pressurized fluid to the latch and the fan duct, and selectively opening the valve, whereby the pressurized fluid opens the fan duct. A gas turbine engine includes a fan duct with an inner structure surrounding an engine core, a fan case surrounding a fan, and at least one latch. The at least one latch secures a first portion of the fan duct inner structure to a core engine fame or to a second portion of the fan duct inner structure. The at least one latch is also configured to secure the second portion of the fan duct inner structure to the core engine fame or to the first portion of the fan duct inner structure.
Abstract:
Systems for thrust reverser link arm connections are described herein. A fitting for a thrust reverser link arm may comprise a base plate configured to be fastened to a proximal surface of an inner fixed structure (IFS), a first wall extending orthogonally from the base plate, a pin extending orthogonally from the first wall, a second wall extending orthogonally from the base plate, a removable member, a first column located between the first wall and the second wall, and a second column located between the first wall and the second wall. The removable member may surround at least a portion of the pin. The removable member may be removed from a radially outward side of the IFS.
Abstract:
A turbofan engine may comprise an inlet and a fan case coupled to the inlet. An engine case may be coupled to the fan case via a vane extending between the fan case and the engine case. A strut apparatus may extend from the fan case and limit deflection of the fan case. The strut apparatus may comprise a first end proximate the fan case, and a second end coupled to at least one of the engine case or a structure for mounting the turbofan engine to an aircraft.
Abstract:
A nacelle assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a fan nacelle bounding a bypass flow path. The fan nacelle includes a first nacelle section and a second nacelle section. The second nacelle section includes a moveable portion movable relative to a forward portion to define a secondary flow passage. The first nacelle section includes an inlet lip. A thrust reverser is configured to selectively communicate a portion of bypass airflow between the bypass flow path and the secondary flow passage. A pump is configured to selectively communicate airflow between the inlet lip and the secondary flow passage. A method of flow distribution for a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine comprises a fan rotor having fan blades received within an outer nacelle, and the outer nacelle having an inner surface. The outer nacelle is secured to an inner portion through a mount flange at a first axial location. An acoustic treatment extends inwardly of the outer portion of the nacelle and across the axial location of the mount flange and further inwardly toward the fan blades.
Abstract:
A thrust reverser cascade for a gas turbine engine is disclosed. The thrust reverser cascade may comprise a plurality of turning vanes. One or more of the turning vanes may comprise a core formed from a polymer and a metallic coating applied to at least a portion of an outer surface of the core. The metallic coating may comprise nickel or a nickel alloy.
Abstract:
A nacelle assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a fan nacelle bounding a bypass flow path. The fan nacelle includes a first nacelle section and a second nacelle section. The second nacelle section includes a moveable portion movable relative to a forward portion to define a secondary flow passage. The first nacelle section includes an inlet lip. A thrust reverser is configured to selectively communicate a portion of bypass airflow between the bypass flow path and the secondary flow passage. A pump is configured to selectively communicate airflow between the inlet lip and the secondary flow passage. A method of flow distribution for a gas turbine engine is also disclosed.
Abstract:
A nacelle for a gas turbine engine includes a bifurcation, an outer diameter cowl and a first latch system. The outer diameter cowl extends from the bifurcation and the first latch system is mounted on the outer diameter cowl. The first latch system is spaced along the outer diameter cowl from the bifurcation.
Abstract:
A gas turbine engine includes a fan duct including a fan duct inner structure that surrounds a core engine, a fan case that surrounds a fan, a core engine frame, and at least one mechanism configured to secure a portion of the fan duct inner structure to a portion of the core engine frame. The at least one mechanism includes a castellated arcuate portion mounted to one of the fan duct inner structure and the core engine frame and an inwardly projecting retaining feature mounted to the other of the fan duct inner structure and the core engine frame. The castellated arcuate portion is rotatable about an engine central longitudinal axis to position a feature of the castellated arcuate portion proximate to a portion of the inwardly projecting retaining feature to latch the fan duct inner structure.
Abstract:
A thrust reverser cascade for a gas turbine engine is disclosed. The thrust reverser cascade may comprise a plurality of turning vanes. One or more of the turning vanes may comprise a core formed from a polymer and a metallic coating applied to at least a portion of an outer surface of the core. The metallic coating may comprise nickel or a nickel alloy.