Abstract:
A fuel cell system includes at least one fuel cell stack designed to react reactants for current generation, a cold start detection apparatus for detecting a cold start state of a fuel cell stack and a load which may be connected to the fuel cell stack 2. A control device is designed to connect the load when the fuel cell stack 2 is in the cold start state. The supply of the reactants for the fuel cell stack is conformed to connection of the load, and the control device is designed with software and/or circuitry so as to vary the connected load in one or more step load changes in response to detection of the cold start state of the fuel cell stack.
Abstract:
A fuel cell system (10) includes at least one fuel cell (12) provided with an anode area (14) and a cathode area (18) which is separated from the anode area (14) by an electrolyte (16) and a first liquid separator (42). A liquid out (60) of the first liquid separator (42) is connected to a second liquid separator (44) or cathode gas discharge line (24) via a first bypass line (78).
Abstract:
A method of ceasing operation of a fuel cell system comprises terminating a supply of a hydrogen-containing fuel to a fuel cell stack, drawing a potential of the fuel cell stack to a load to substantially consume hydrogen in the fuel cell stack, introducing a dose of air to at least a portion of anode electrode layers from at least one of an air supply source and an external source, and reacting hydrogen and oxygen in the anode electrode layers to consume substantially all the hydrogen remaining in the fuel cell stack.
Abstract:
A coolant circuit for cooling a fuel cell stack for a motor vehicle includes a heating device for raising the temperature of the coolant and a cooling device for lowering the temperature of the coolant. The cooling device and the heating device are fluidically connected in series in the coolant circuit. The cooling device is constructed as an external cooler for the vehicle.