Abstract:
Systems and methods for delivery of radiotherapy in conjunction with magnetic resonance imaging in which various conductors, shields and shims may be used to solve issues occurring when radiation therapy equipment is placed in the vicinity of an magnetic resonance imaging system.
Abstract:
Systems and methods for tomographic reconstruction of an image include systems and methods for producing images from k-space data. A k-space data set of an imaged object is acquired using know k-space data acquisition systems and methods. A portion of the k-space data set is sampled so as to collect some portion of the k-space data. An image is then reconstructed from the collected portion of the k-space data set according to a convex optimization model.
Abstract:
A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.
Abstract:
A system including a diagnostic-quality CT scanner for imaging a patient, the diagnostic-quality CT scanner having an imaging isocenter and a radiation therapy device positioned adjacent the diagnostic-quality CT scanner, the radiation therapy device including a gantry carrying a radiation therapy beam source and having a radiation therapy isocenter separate from the imaging isocenter of the diagnostic-quality CT scanner. The system including a couch configured to position the patient for imaging and for radiation therapy by translating the patient between the diagnostic quality CT scanner and the radiation therapy device.
Abstract:
Systems, methods, and computer software are disclosed that allow the automatic recalling of imaging parameters from computer memory for controlling an MRI system to perform treatment-day scans of a patient on a treatment couch in a radiotherapy system, prior to treatment. The treatment-day scans can be automatically initialized and the MRI system can then be controlled to perform the treatment-day scans according to the recalled imaging parameters. Reoptimized radiation treatment plan(s) can be automatically generated and predicted doses to anatomical structures of the patient based on the plan(s) can be displayed. Clinicians can be enabled to perform numerous reoptimization tasks simultaneously through parallel workflow interfaces and then a radiation therapy device can be controlled to deliver radiation according to a selected radiation treatment plan.
Abstract:
A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
Abstract:
Edema in tissue of a patient undergoing a course of radiation therapy or treatment can be estimated based on one or more MRI measurements used to measure changes in fluid content of various tissues. A correlation between observed changes in edema and one or more delivered fractions of radiation can be used to drive one or more clinical actions. Methods, systems, articles of manufacture, and the like are described.
Abstract:
A photon therapy delivery system can deliver radiation therapy to a patient via a photon beam. The system can utilize a controller configured to facilitate delivery of radiation therapy via a photon beam and also a particle beam. This can include receiving radiation therapy beam information for radiation therapy treatment of a patient utilizing the particle beam and photon beam. Also, patient magnetic resonance imaging (MRI) data can be received during the radiation therapy treatment. Utilizing the patient MRI data, real-time calculations of a location of dose deposition for the particle beam and for the photon beam can be determined taking into account interaction properties of soft tissues through which the particle beam passes.
Abstract:
Magnetic resonance (MR) guided radiation therapy (MRgRT) enables control over the delivery of radiation based on patient motion indicated by MR imaging (MRI) images captured during radiation delivery. A method for MRgRT includes: simultaneously using one or more radiation therapy heads to deliver radiation and an MRI system to perform MRI; using a processor to determine whether one or more gates are triggered based on at least a portion of MRI images captured during the delivery of radiation; and in response to determining that one or more gates are triggered based on at least a portion of the MRI images captured during the delivery of radiation, suspending the delivery of radiation.
Abstract:
Edema in tissue of a patient undergoing a course of radiation therapy or treatment can be estimated based on one or more MRI measurements used to measure changes in fluid content of various tissues. A correlation between observed changes in edema and one or more delivered fractions of radiation can be used to drive one or more clinical actions. Methods, systems, articles of manufacture, and the like are described.