摘要:
The side profile of a hard drive assembly may be configured with one or more open areas to allow cooling air to pass side-to-side through a lateral flow channel provided by a cavity defined in the base portion of the hard drive assembly. Corresponding and complementary open areas may be also be defined in mating drive carrier assembly side components to allow passage of lateral side-to-side cooling air through the base portion flow channel of a hard drive assembled to the drive carrier assembly to form a mountable hard drive system that is installed into a storage enclosure. The at least partially aligned open flow areas of the assembled hard dive assembly and drive carrier assembly may cooperate to reduce air flow impedance across multiple rows of hard drive systems through a storage enclosure.
摘要:
Systems and methods are provided for throughput optimization of a hard disk drive (HDD) using position error signaling (PES) that includes determining a PES for a HDD mounted in a chassis based on a dynamic disturbance. The method also includes calculating a critical parameter of the PES. The method further includes indicating a mechanical design modification of the HDD or the chassis if the critical parameter of the PES exceeds a pre-defined threshold.
摘要:
Systems and methods are provided for throughput optimization of a hard disk drive (HDD) using position error signaling (PES) that includes determining a PES for a HDD mounted in a chassis based on a dynamic disturbance. The method also includes calculating a critical parameter of the PES. The method further includes indicating a mechanical design modification of the HDD or the chassis if the critical parameter of the PES exceeds a pre-defined threshold.
摘要:
A hard disk drive with a disk base including a disk wall with a first intake, a second intake off of the first intake, an outlet and an air filter configured to receive a first airflow from the first intake and suction from a second airflow from the second intake creating negative pressure at a trapping surface of the air filter away from the outlet. At least one disk rotates to create a rotating disk surface generating airflow configured to enter the first intake to create the first airflow. A disk damper includes an enclosing wall neighboring the air filter to create a flow chamber providing a third airflow through the outlet formed of the first air flow crossing the trapping surface and the second air flow. A disk cover mounts on the disk base to encapsulate the air chamber. The disk base and disk damper are disclosed.
摘要:
A slider cradle for lateral positioning slider near rotating disk surface in hard disk drive, consisting essentially of piezoelectric micro-actuator coupling to slider cradle blank, further including piezoelectric micro-actuator coupling to first slider mount arm near slider mount and near slider mount base. A head gimbal assembly including slider cradle coupling to slider, flexure finger, and flexure finger electrically coupling to piezoelectric contacts. An actuator arm coupling to at least one head gimbal assembly. An actuator assembly, comprising voice coil coupling to at least one actuator arm. A hard disk drive containing actuator assembly. The invention includes a method of making slider cradle blank and slider cradle. The products of this process. Making head gimbal assembly, actuator assembly and hard disk drive using the invention's components. The head gimbal assembly, the actuator assembly, and the hard disk drive are products of these processes.
摘要:
A hard disk drive and head gimbal assembly including a flexure finger with a micro-actuator split of the flexure supporting a micro-actuator control line, leading to minimized gimbal width for the flexure finger about the micro-actuator assembly including the coupled slider and micro-actuators to reduce mechanical vibrations caused by wind off of a rotating disk surface accessed by the slider.
摘要:
Head stack assembly coupling at least two micro-actuators sharing lateral control signal. Any two adjacent micro-actuators respond to lateral control signal by opposite lateral directions. With pairs of micro-actuators, lateral motion of the micro-actuators will be cancelled, essentially leaving head stack assembly without induced torque. With odd numbers of micro-actuators, head stack assembly will effectively experience only lateral motion of one micro-actuator, minimizing induced torque. The micro-actuators may use electrostatic effect and/or piezoelectric effect to create lateral motion. The micro-actuators may further include a vertical actuation capability, which may preferably be independent of the lateral control signal. The servo controller operates based upon micro-actuator being used. Embedded circuit includes servo controller. The hard disk drive containing head stack assembly and further containing servo controller. Manufacturing hard disk drive and head stack assembly. The head stack assembly and hard disk drive, as products of these manufacturing processes.
摘要:
A micro-actuator assembly, which includes a first micro-actuator. The first micro-actuator includes: Two pivot spring pairs coupling to first stator and second stator. Two flexure spring pairs and pitch spring pair coupling to central movable section, which includes signal pair paths coupling to read-write head of a slider. The central movable section positions read-write head and conducts read-write head signaling. First micro-actuator electrical stimulus is through some of its springs. Micro-actuator assembly may include second micro-actuator with third stator and fourth stator interacting with central movable section. The second micro-actuator may also provide motion sensing, possibly indicating collision with the rotating disk surface being accessed. The invention includes head gimbal assemblies, actuator arms, actuator assemblies, voice coil assemblies and hard disk drives containing various embodiments of these micro-actuator assemblies.
摘要:
The present invention is a mechanism for making minute adjustments in the position of a read/write head for magnetically or optically reading from or writing to a data storage media. The head positioning mechanism (microactuator) will preferably be used in association with known disk storage actuation systems such as those typically used in current magnetic data storage devices such as hard disk drives, and optical data storage devices such as CDs. The microactuator comprises a slider support arm with a slider formed thereon, that is separated from an anchor structure by a gap. A pizoelectric element is positioned across the gap and is coupled at one end to the slider support arm, and at the other to the anchor structure. The anchor structure has greater resistance to bending than the slider support arm. Thus, when the piezoelectric element changes length, the slider support arm will tend to bend relative to the anchor structure, moving the slider on the slider support arm a controlled minute distance.
摘要:
Systems and methods are provided that may be implemented to provide a mechanical indicator to correlate magnetic disk drive IOP performance with features of mechanical and/or acoustic vibrational frequencies that are generated and captured or sensed outside of the disk drive itself. In one example, disk drive PES data may be collected concurrently with the capture of mechanical and/or acoustic vibrational data at different and progressive locations of vibration source, vibration path and vibration receiver in a disk drive operating environment, e.g., such as for disk drives installed within a server and/or storage chassis enclosure. In such case, PES threshold may be utilized to correlate performance of Drive IOP or drive servo-mechanical performance as a function of measured characteristics of vibration source/s that impart vibration to a disk drive.