Abstract:
A method of operating a printer separates the image content data for a sheet in a print job into multiple color separations and operates a digital air curtain between the printhead modules that print the multiple color separations. Image data of the printed color separations are used to adjust operating parameters for the digital air curtain.
Abstract:
A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising an airflow guide structure extending into the opening of the carrier plate, the airflow guide structure configured to flow air at a direction aimed under the printhead and at an oblique angle relative to the movable support surface. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
Abstract:
A printer includes a heat control device configured to cause a temperature of a part that is printed by the printer to remain within a predetermined range as a height of the part increases from about 0 mm to about 30 mm. The predetermined range is from about 545° C. to about 600° C. The heat control device includes a heat plate that is configured to generate heat in a downward direction toward the part.
Abstract:
A three-dimensional (3D) metal object manufacturing apparatus is equipped with a removable vessel to reduce the time required for start-up procedures after the printer is serviced. The removable vessel is filled with solid metal that is heated to its melting temperature before the bulk wire is inserted into the vessel to commence printing operations. The melting of the solid metal in the removable vessel requires less time that the melting of an length of bulk wire adequate to produce a volume of melted metal suitable for printer operation. The solid metal in the removable vessel can be metal pellets, metal powder, or a solid metal insert.
Abstract:
The present disclosure is directed to a multilayer imaging blanket for a variable data lithography printing system, including: a multilayer base having a lower contacting surface configured to wrap around or to be mounted on a cylinder core of the variable data lithography printing system; and a platinum catalyzed fluorosilicone surface layer opposite the lower contacting surface; wherein the multilayer base is a sulfur-free carcass including: a top layer including a sulfur-free rubber substrate such as an ethylene propylene diene monomer (EPDM) rubber substrate, a bottom layer including the lower contacting surface; and a compressible layer disposed between the top layer and the bottom layer, the compressible layer being attached to a surface of the top layer opposite the platinum catalyzed fluorosilicone surface layer and a surface of the bottom layer opposite the lower contacting surface, optionally the top layer further comprises a reinforcing fabric layer, the reinforcing fabric layer attached to a surface of the compressible layer opposite the bottom layer.
Abstract:
In an inkjet printer, a first printhead forms a first mark on a print medium using a high-contrast ink. A second printhead forms a second mark on the first mark using a low-contrast ink. The printer generates image data of the low-contrast ink mark and the high-contrast ink, and a controller in the printer identifies a cross-process direction offset between the first printhead and the second printhead with reference to a distance between the center of the first mark and the second mark in the image data.
Abstract:
A method for printing on a continuous print medium having a plurality of pages includes identifying a location of a feature in image data that are generated from a portion of a first page in the print medium. The method includes modifying a time of operation of a marking unit to form an image on each page in the plurality of pages at a predetermined distance from the edge of each page with reference to the location of the identified feature in the image data. In one configuration, the method enables precise placement of printed images over preprinted forms.
Abstract:
In an inkjet printer, a first printhead forms a first mark on a print medium using a high-contrast ink. A second printhead forms a second mark on the first mark using a low-contrast ink. The printer generates image data of the low-contrast ink mark and the high-contrast ink, and a controller in the printer identifies a cross-process direction offset between the first printhead and the second printhead with reference to a distance between the center of the first mark and the second mark in the image data.
Abstract:
A method of operating a printer extends the print zone of the printer by separating at least two printhead modules in the print zone by a distance that is greater than a width of a printhead module. The printhead modules are operated to print multiple color separations of an ink image and operates an optical sensors generates image data of the printed multiple color separations. The image data of the printed color separations are used to adjust distances between printhead modules in the print zone.
Abstract:
A printing system comprises an ink deposition assembly, a media transport device, and an airflow control system. The ink deposition assembly comprises a printhead to eject ink through a carrier plate opening in a carrier plate. The media transport device holds a print medium against a movable support surface by vacuum suction and transports the print media through a deposition region. The airflow control system comprises a baffle that is movable between an upstream-blocking configuration and a downstream-blocking configuration, and an actuator configured to move the baffle. In the upstream-blocking configuration the baffle blocks airflow through an upstream side of the printhead opening while allowing airflow through a downstream side of the printhead opening. In the downstream-blocking configuration the baffle blocks airflow through the downstream side of the printhead opening while allowing airflow through the upstream side of the printhead opening.