Abstract:
An image based correction system compensates for the image quality artifacts induced by thermal ghosting on evolving imaging member surfaces. With thermal ghosting directly tied to previous image content, a feed forward system determines thermal ghosting artifacts based on images previously rendered and generates an open loop gray-level correction to a current image that mitigates undesirable ghosting. For example, the correction system compensates for the thermal ghosting by making the current image “lighter” in areas that will be imaged onto warmer blanket regions, thereby cancelling out TRC differences between different temperature regions. A temperature sensor is used to measure the temperature of the imaging blanket due to the stresses induced by the image. This data is used to learn the parameters of the temperature model periodically during operation, and used in subsequent corrections to mitigate thermal ghosting in spite of changes in blanket properties over use and time.
Abstract:
A drag force sensor on a fountain solution carrier roller surface measures drag force of a fountain solution layer on the fountain solution carrier roller surface in real-time during a printing operation. The measured drag force is used in a feedback loop to actively control the fountain solution layer thickness by adjusting the volumetric feed rate of fountain solution added onto the imaging member surface during a printing operation to reach a desired uniform thickness for the printing. This fountain solution monitoring system may be fully automated.
Abstract:
A method of operating a printer includes identifying a region of a print medium located between marks formed by a first plurality of inkjets in the printer and an edge of the print medium. The printer activates a second plurality of inkjets to print ink drops into the region during a printing operation. The method enables full-bleed or near full-bleed printing for different media sizes.
Abstract:
A method of operating a printer to detect errors in an optical sensor includes forming a printed line across a first side of a print medium and generating first image data corresponding to the printed line with the optical sensor. The optical sensor generates second image data of the second side of the print medium as the print medium passes the optical sensor a second time. A detect in the optical sensor is identified with reference to a difference between process direction alignments of the line in the first image data and the second image data.
Abstract:
A color inkjet printer includes an electrode that emits an electric field into a gap between a printhead and a media transport that carries media past the printhead. Image data generated by an optical sensor after an ink image is printed on the media is analyzed to measure at least one image quality metric. When the measured image quality metric is outside of a tolerance range, the voltage of a voltage source electrically connected to the electrode is adjusted to improve the wetting of the media type with the ink ejected by the printhead.
Abstract:
A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
Abstract:
A three-dimensional (3D) metal object manufacturing apparatus is equipped with an orifice cleaning system that removes metal drops that have adhered to a plate, an orifice in the plate, and a nozzle ejecting melted metal drops through the orifice during object forming operations. The orifice cleaning system includes an orifice cleaning tool that consists essentially of a soft carbon material, such as graphite. The orifice cleaning tool is configured with a handle that is gripped by an articulated arm to move the orifice cleaning tool against the plate, the orifice, and a portion of the nozzle at the orifice.
Abstract:
An MFD is disclosed. For example, the MFD includes a printhead to dispense print material, an enhancement printhead to dispense an enhancement printing fluid, a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include determining that an automated enhancement feature was selected, analyzing each pixel of an image to be printed to determine one or more pixels that are to receive the enhancement printing fluid, controlling the printhead to print the image, and controlling the enhancement printhead to dispense the enhancement printing fluid on the one or more pixels that are to receive the enhancement printing fluid.
Abstract:
An image based correction system compensates for the image quality artifacts induced by thermal ghosting. With thermal ghosting directly tied to previous image content, a feed forward control system predicts the thermal ghosting artifact based on the images previous printed and generates an open loop, 2-D correction to the gray-level image that mitigates the undesirable ghosting artifacts. For example, the correction system compensates for the thermal ghosting by making the current digital image “lighter” in areas that will be imaged onto warmer blanket regions, thereby cancelling out TRC differences between different temperature regions.
Abstract:
A method for printing on a continuous print medium having a plurality of pages includes identifying a location of a feature in image data that are generated from a portion of a first page in the print medium. The method includes modifying a time of operation of a marking unit to form an image on each page in the plurality of pages at a predetermined distance from the edge of each page with reference to the location of the identified feature in the image data. In one configuration, the method enables precise placement of printed images over preprinted forms.