摘要:
Techniques for transmitting data from multiple transmit antennas using space orthogonal resource transmit diversity (SORTD) are described. For the SORTD scheme, a different orthogonal resource may be assigned to each transmit antenna. Data may be sent from the multiple transmit antennas using multiple orthogonal resources. In one design, a UE may process at least one information bit (e.g., with joint or independent coding) to obtain first and second sets of at least one modulation symbol. The UE may process the first set of modulation symbol(s) for transmission from the first transmit antenna using a first orthogonal resource. The UE may process the second set of modulation symbol(s) for transmission from the second transmit antenna using a second orthogonal resource. Each orthogonal resource may include a different reference signal sequence or a different set of reference signal sequence and orthogonal sequence.
摘要:
Systems and methodologies are described that facilitate cycling through precoders for transmitting wireless network communications in a time domain. The precoders can be cycled according to a precoder sequence for each data symbol transmission. When the last precoder is selected the cycle can begin again, a new precoder sequence can be received or defined, and/or the like. A precoder sequence related to a subset of precoders present in a wireless device can be defined sequentially, cyclically shifted according to an identifier or one or more communications parameters, randomly, pseudo-randomly according to an identifier or one or more communications parameters, and/or the like. In addition, the precoder sequence can be utilized to select a precoder for one or more retransmissions. Such cycling of precoders can increase transmit diversity.
摘要:
Systems and methodologies are described that facilitate cycling through precoders for transmitting wireless network communications in a time domain. The precoders can be cycled according to a precoder sequence for each data symbol transmission. When the last precoder is selected the cycle can begin again, a new precoder sequence can be received or defined, and/or the like. A precoder sequence related to a subset of precoders present in a wireless device can be defined sequentially, cyclically shifted according to an identifier or one or more communications parameters, randomly, pseudo-randomly according to an identifier or one or more communications parameters, and/or the like. In addition, the precoder sequence can be utilized to select a precoder for one or more retransmissions. Such cycling of precoders can increase transmit diversity.
摘要:
Techniques for transmitting a reference signal on multiple non-contiguous clusters of resources are described. A user equipment (UE) may be scheduled for data transmission on the multiple non-contiguous clusters, and each cluster may cover a set of contiguous subcarriers. The UE may generate the reference signal based on at least one reference signal (RS) sequence using code division multiplexing (CDM) or frequency division multiplexing (FDM). In an design, the UE generates the reference signal with CDM based on a single RS sequence having a length matching the total length of the multiple non-contiguous clusters. In another design, the UE generates the reference signal with CDM based on one RS sequence for each cluster. In yet another design, the UE generates the reference signal with FDM and transmits the reference signal on a subset of all subcarriers for the multiple non-contiguous clusters.
摘要:
A reference signal is transmitted on multiple non-contiguous clusters of resources. A user equipment (UE) may be scheduled for data transmission on the multiple non-contiguous clusters, and each cluster may cover a set of contiguous subcarriers. The UE may generate the reference signal based on at least one reference signal (RS) sequence using code division multiplexing (CDM) or frequency division multiplexing (FDM). In a design, the UE generates the reference signal with CDM based on a single RS sequence having a length matching the total length of the multiple non-contiguous clusters. In another design, the UE generates the reference signal with CDM based on one RS sequence for each cluster. In yet another design, the UE generates the reference signal with FDM and transmits the reference signal on a subset of all subcarriers for the multiple non-contiguous clusters.
摘要:
Techniques for performing channel interleaving to achieve similar SINRs for multiple code blocks are described. In one design, a transmitter station (e.g., a base station or a UE) determines a plurality of resource groups assigned for data transmission. Each resource group includes a plurality of resource elements formed by a cluster of subcarriers in a time interval. The transmitter station partitions a transport block into a plurality of code blocks, processes each code block to obtain data symbols for that code block, and maps the data symbols for each code block to at least one resource element in each of the plurality of resource groups. The transmitter station transmits the mapped data symbols for the plurality of code blocks to a receiver station. In one design, the transmitter station receives an ACK or a NACK for the transport block and retransmits all code blocks if a NACK is received.
摘要:
Certain aspects of the present disclosure relate to a technique for signaling rank and precoding indications in uplink and downlink MIMO operations using codebook and non-codebook based precoding.
摘要:
Certain aspects of the present disclosure relate to a technique for signaling rank and precoding indications in uplink and downlink MIMO operations using codebook and non-codebook based precoding.
摘要:
Certain aspects of the present disclosure relate to a technique for signaling rank and precoding indications in uplink and downlink MIMO operations using codebook and non-codebook based precoding.
摘要:
Techniques for performing channel interleaving to achieve similar SINRs for multiple code blocks are described. In one design, a transmitter station (e.g., a base station or a UE) determines a plurality of resource groups assigned for data transmission. Each resource group includes a plurality of resource elements formed by a cluster of subcarriers in a time interval. The transmitter station partitions a transport block into a plurality of code blocks, processes each code block to obtain data symbols for that code block, and maps the data symbols for each code block to at least one resource element in each of the plurality of resource groups. The transmitter station transmits the mapped data symbols for the plurality of code blocks to a receiver station. In one design, the transmitter station receives an ACK or a NACK for the transport block and retransmits all code blocks if a NACK is received.