Abstract:
A method for calculating the required power of a toric implant by using both the measured pre-operative corneal astigmatism and the predicted surgically-induced post-operative astigmatism. The surgically-induced post-operative astigmatism is predicted using power vector analysis of the surgical technique employed by the surgeon. Such a method provides a more accurate method of calculating the required post-operative refractive power of the implant. The method can be implemented manually, but preferably is automated by implementation on a computer through appropriate software.
Abstract:
In one aspect, the present invention provides an ophthalmic lens (e.g., an IOL) that includes an optic having an anterior surface and a posterior surface disposed about an optical axis. At least one of the surfaces (e.g., the anterior surface) has a profile characterized by superposition of a base profile and an auxiliary profile. The auxiliary profile can include an inner region, an outer region and a transition region between the inner and the outer regions, where an optical path difference across the transition region (i.e., the optical path difference between the inner and the outer radial boundaries of the transition region) corresponds to a non-integer fraction (e.g., ½) of a design wavelength (e.g., a wavelength of about 550 nm).
Abstract:
The present invention is generally directed to accommodative intraocular lenses (IOLs) that exhibit a dynamic spherical aberration as a function of accommodative power. By way of example, in one aspect, the present invention provides an intraocular lens (IOL) having an anterior optical element, a posterior optical element, and a mechanism for coupling the anterior and posterior elements so as to allow axial movement of those elements relative to one another for providing accommodation when the lens is implanted in a patient's eye. Each of the anterior and the posterior elements includes at least one aspherical surface, where the asphericities of the surfaces are adapted to provide a combined spherical aberration that varies with accommodation.
Abstract:
In one aspect, the present invention provides a method of designing an intraocular lens (IOL) to address variations of at least one ocular parameter in a population of patient eyes. The method can include establishing at least one eye model in which the ocular parameter can be varied over a range exhibited by the population. The eye model can be employed to evaluate a plurality of IOL designs in correcting visual acuity for eyes in the patient population. An IOL design that provides a best fit for visual performance over at least a portion of the parameter range can then be selected.
Abstract:
In one aspect, the present invention provides a method of designing a diffractive ophthalmic lens (e.g., an intraocular lens (IOL)) that includes providing an optic having an anterior refractive surface and a posterior refractive surface, wherein the optic provides a far-focus power (e.g., in a range of about 18 to about 26 Diopters (D)). A truncated diffractive structure can be disposed on at least one of the surfaces for generating a near-focus add power (e.g., in a range of about 3 D to about 4 D). And the diffractive structure can be adjusted so as to obtain a desired distribution of optical energy between the near and far foci for a range of pupil sizes.
Abstract:
An ophthalmic lens includes an optic having an anterior surface and a posterior surface. The lens also includes a monofocal diffractive structure disposed on one of said surfaces for providing a diffractive focusing power. The lens further includes at least one multifocal diffractive structure disposed on one of said surfaces for providing a plurality of diffractive focusing powers. The multifocal diffractive structure is adapted to provide chromatic aberration compensation for near vision.
Abstract:
In one aspect, the present invention provides an intraocular lens (IOL) that includes an optic comprising an anterior surface, a posterior surface, and a plurality of diffractive zones disposed on one of those surfaces. The surface having the diffractive zones has a profile characterized by a combination of aspheric and toric components.
Abstract:
In one aspect, the present invention provides an ophthalmic lens (e.g., an IOL) that includes an optic having an anterior surface and a posterior surface disposed about an optical axis. At least one of the surfaces (e.g., the anterior surface) has a profile characterized by superposition of a base profile and an auxiliary profile. The auxiliary profile can include an inner region, an outer region and a transition region between the inner and the outer regions, where an optical path difference across the transition region (i.e., the optical path difference between the inner and the outer radial boundaries of the transition region) corresponds to a non-integer fraction (e.g., ½) of a design wavelength (e.g., a wavelength of about 550 nm).
Abstract:
The present invention is generally directed to accommodative intraocular lenses (IOLs) that exhibit a dynamic spherical aberration as a function of accommodative power. By way of example, in one aspect, the present invention provides an intraocular lens (IOL) having an anterior optical element, a posterior optical element, and a mechanism for coupling the anterior and posterior elements so as to allow axial movement of those elements relative to one another for providing accommodation when the lens is implanted in a patient's eye. Each of the anterior and the posterior elements includes at least one aspherical surface, where the asphericities of the surfaces are adapted to provide a combined spherical aberration that varies with accommodation.
Abstract:
In one aspect, the present invention provides a two-element ophthalmic lens in which a lateral shift of the elements relative to one another can cause a variation not only in a spherical power provided by the lens but also in spherical aberration exhibited by that lens. In some implementations, the thickness profiles of the two elements are designed such that the variation in spherical aberration is positively correlated with that of the spherical power of the lens.