Method and System for Physiological Image Registration and Fusion
    22.
    发明申请
    Method and System for Physiological Image Registration and Fusion 有权
    生理图像配准与融合方法与系统

    公开(公告)号:US20100067768A1

    公开(公告)日:2010-03-18

    申请号:US12562483

    申请日:2009-09-18

    IPC分类号: G06K9/00

    摘要: A method and system for physiological image registration and fusion is disclosed. A physiological model of a target anatomical structure in estimated each of a first image and a second image. The physiological model is estimated using database-guided discriminative machine learning-based estimation. A fused image is then generated by registering the first and second images based on correspondences between the physiological model estimated in each of the first and second images.

    摘要翻译: 公开了一种用于生理图像配准和融合的方法和系统。 估计每个第一图像和第二图像中的目标解剖结构的生理模型。 使用数据库引导的基于判别机器学习的估计来估计生理模型。 然后通过基于在第一和第二图像中的每一个中估计出的生理模型之间的对应来登记第一和第二图像来生成融合图像。

    Method and System for Left Ventricle Detection in 2D Magnetic Resonance Images
    24.
    发明申请
    Method and System for Left Ventricle Detection in 2D Magnetic Resonance Images 有权
    二维磁共振图像左心室检测方法与系统

    公开(公告)号:US20100040272A1

    公开(公告)日:2010-02-18

    申请号:US12504047

    申请日:2009-07-16

    IPC分类号: G06K9/00 A61B5/055

    CPC分类号: G06K9/6202 G06K2209/051

    摘要: A method and system for left ventricle (LV) detection in 2D magnetic resonance imaging (MRI) images is disclosed. In order to detect the LV in a 2D MRI image, a plurality of LV candidates are detected, for example using marginal space learning (MSL) based detection. Candidates for distinctive anatomic landmarks associated with the LV are then detected in the 2D MRI image. In particular, apex candidates and base candidates are detected in the 2D MRI image. One of the LV candidates is selected as a final LV detection result using component-based voting based on the detected LV candidates, apex candidates, and base candidates.

    摘要翻译: 公开了一种用于2D磁共振成像(MRI)图像中左心室(LV)检测的方法和系统。 为了检测2D MRI图像中的LV,例如使用基于边缘空间学习(MSL)的检测来检测多个LV候选。 然后在2D MRI图像中检测与LV相关的特征性解剖学标记的候选者。 特别地,在2D MRI图像中检测到顶点候选和基础候选。 使用基于检测到的LV候选,顶点候选和基础候选的基于组件的投票,将LV候选中的一个选择为最终的LV检测结果。

    Method and system for left ventricle endocardium surface segmentation using constrained optimal mesh smoothing
    25.
    发明申请
    Method and system for left ventricle endocardium surface segmentation using constrained optimal mesh smoothing 失效
    使用约束最优网格平滑的左心室心内膜表面分割的方法和系统

    公开(公告)号:US20090190811A1

    公开(公告)日:2009-07-30

    申请号:US12319686

    申请日:2009-01-09

    IPC分类号: G06K9/34 G06T15/00 G06T17/00

    摘要: A method and system for left ventricle (LV) endocardium surface segmentation using constrained optimal mesh smoothing is disclosed. The LV endocardium surface in the 3D cardiac volume is initially segmented in a 3D cardiac volume, such as a CT volume, resulting in an LV endocardium surface mesh. A smoothed LV endocardium surface mesh is generated by smoothing the LV endocardium surface mesh using constrained optimal mesh smoothing. The constrained optimal mesh smoothing determines an optimal adjustment for each point on the LV endocardium surface mesh by minimizing an objective function based at least on a smoothness measure, subject to a constraint bounding the adjustment for each point. The adjustment for each point can be constrained to prevent adjustments inward toward the blood pool in order to ensure that the smoothed LV endocardium surface mesh encloses the entire blood pool.

    摘要翻译: 公开了使用约束最优网格平滑的左心室(LV)心内膜表面分割的方法和系统。 3D心脏体积中的LV心内膜表面最初在3D心脏体积(例如CT体积)中分段,导致LV心内膜表面网。 通过使用约束最优网格平滑平滑LV心内膜表面网格来生成平滑的LV心内膜表面网格。 受约束的最优网格平滑通过使至少基于平滑度量度的目标函数最小化来限制LV心内膜表面网格上的每个点的最佳调整,受限于对每个点的调整。 可以限制每个点的调整以防止向血液向内的调节,以确保平滑的LV心内膜表面网格包围整个血液池。

    Method and system for left ventricle detection in 2D magnetic resonance images using ranking based multi-detector aggregation
    26.
    发明授权
    Method and system for left ventricle detection in 2D magnetic resonance images using ranking based multi-detector aggregation 有权
    使用基于排序的多检测器聚合的2D磁共振图像中左心室检测的方法和系统

    公开(公告)号:US08340385B2

    公开(公告)日:2012-12-25

    申请号:US12630061

    申请日:2009-12-03

    IPC分类号: G06K9/00

    摘要: A method and system for left ventricle (LV) detection in 2D magnetic resonance imaging (MRI) images is disclosed. In order to detect the LV in a 2D MRI image, a plurality of LV candidates are detected, for example using marginal space learning (MSL) based detection. Candidates for distinctive anatomic landmarks associated with the LV are then detected in the 2D MRI image. In particular, apex candidates and base candidates are detected in the 2D MRI image. One of the LV candidates is selected as a final LV detection result by ranking the LV candidates based on the LV candidates, the apex candidates, and the base candidates using a trained ranking model.

    摘要翻译: 公开了一种用于2D磁共振成像(MRI)图像中左心室(LV)检测的方法和系统。 为了检测2D MRI图像中的LV,例如使用基于边缘空间学习(MSL)的检测来检测多个LV候选。 然后在2D MRI图像中检测与LV相关的特征性解剖学标记的候选者。 特别地,在2D MRI图像中检测到顶点候选和基础候选。 通过使用训练排名模型,基于LV候选,顶点候选和基础候选对LV候选进行排名,将LV候选者中的一个选择为最终的LV检测结果。

    Method and system for left ventricle endocardium surface segmentation using constrained optimal mesh smoothing
    28.
    发明授权
    Method and system for left ventricle endocardium surface segmentation using constrained optimal mesh smoothing 失效
    使用约束最优网格平滑的左心室心内膜表面分割的方法和系统

    公开(公告)号:US08150119B2

    公开(公告)日:2012-04-03

    申请号:US12319686

    申请日:2009-01-09

    IPC分类号: G06K9/34 G06T15/00

    摘要: A method and system for left ventricle (LV) endocardium surface segmentation using constrained optimal mesh smoothing is disclosed. The LV endocardium surface in the 3D cardiac volume is initially segmented in a 3D cardiac volume, such as a CT volume, resulting in an LV endocardium surface mesh. A smoothed LV endocardium surface mesh is generated by smoothing the LV endocardium surface mesh using constrained optimal mesh smoothing. The constrained optimal mesh smoothing determines an optimal adjustment for each point on the LV endocardium surface mesh by minimizing an objective function based at least on a smoothness measure, subject to a constraint bounding the adjustment for each point. The adjustment for each point can be constrained to prevent adjustments inward toward the blood pool in order to ensure that the smoothed LV endocardium surface mesh encloses the entire blood pool.

    摘要翻译: 公开了使用约束最优网格平滑的左心室(LV)心内膜表面分割的方法和系统。 3D心脏体积中的LV心内膜表面最初在3D心脏体积(例如CT体积)中分段,导致LV心内膜表面网。 通过使用约束最优网格平滑平滑LV心内膜表面网格来生成平滑的LV心内膜表面网格。 受约束的最优网格平滑通过使至少基于平滑度量度的目标函数最小化来限制LV心内膜表面网格上的每个点的最佳调整,受限于对每个点的调整。 可以限制每个点的调整以防止向血液向内的调节,以确保平滑的LV心内膜表面网格包围整个血液池。

    Method and System for Virtual Percutaneous Valve Implantation
    29.
    发明申请
    Method and System for Virtual Percutaneous Valve Implantation 审中-公开
    虚拟经皮瓣植入术的方法与系统

    公开(公告)号:US20110153286A1

    公开(公告)日:2011-06-23

    申请号:US12975714

    申请日:2010-12-22

    IPC分类号: G06F17/50

    摘要: A method and system for virtual percutaneous valve implantation is disclosed. A patient-specific anatomical model of a heart valve is estimated based on 3D cardiac medical image data and an implant model representing a valve implant is virtually deployed into the patient-specific anatomical model of the heart valve. A library of implant models, each modeling geometrical properties of a corresponding valve implant, is maintained. The implant models maintained in the library are virtually deployed into the patient specific anatomical model of the heart valve to select an implant type and size and deployment location and orientation for percutaneous valve implantation.

    摘要翻译: 公开了一种用于虚拟经皮瓣植入的方法和系统。 基于3D心脏医学图像数据估计心脏瓣膜的患者特异性解剖模型,并且代表瓣膜植入物的植入模型实际上部署到心脏瓣膜的患者特异性解剖模型中。 植入物模型库,每个建模相应的阀门植入物的几何特性被维持。 维护在库中的植入物模型实际上部署到心脏瓣膜的患者特异性解剖模型中,以选择用于经皮瓣膜植入的植入物类型和尺寸以及部署位置和取向。

    Method and System for Detecting 3D Anatomical Structures Using Constrained Marginal Space Learning
    30.
    发明申请
    Method and System for Detecting 3D Anatomical Structures Using Constrained Marginal Space Learning 有权
    使用约束边际空间学习检测3D解剖结构的方法和系统

    公开(公告)号:US20090304251A1

    公开(公告)日:2009-12-10

    申请号:US12471761

    申请日:2009-05-26

    IPC分类号: G06K9/00

    摘要: A method and apparatus for detecting 3D anatomical objects in medical images using constrained marginal space learning (MSL) is disclosed. A constrained search range is determined for an input medical image volume based on training data. A first trained classifier is used to detect position candidates in the constrained search range. Position-orientation hypotheses are generated from the position candidates using orientation examples in the training data. A second trained classifier is used to detect position-orientation candidates from the position-orientation hypotheses. Similarity transformation hypotheses are generated from the position-orientation candidates based on scale examples in the training data. A third trained classifier is used to detect similarity transformation candidates from the similarity transformation hypotheses, and the similarity transformation candidates define the position, translation, and scale of the 3D anatomic object in the medical image volume.

    摘要翻译: 公开了一种使用受限边际空间学习(MSL)检测医学图像中3D解剖学对象的方法和装置。 基于训练数据确定输入医学图像体积的约束搜索范围。 第一训练分类器用于检测约束搜索范围内的位置候选。 使用训练数据中的取向示例从位置候选者生成位置取向假设。 第二训练分类器用于从位置定向假设检测位置方向候选。 基于训练数据中的比例示例,从位置定位候选生成相似度转换假设。 第三训练分类器用于从相似变换假设检测相似变换候选,并且相似变换候选定义医学图像体积中的3D解剖对象的位置,平移和比例。