摘要:
Methods and apparatuses are provided for detecting blur within digital images using Cepstrum analysis blur detection techniques that are able to detect motion blur and/or out-of-focus blur.
摘要:
Methods and apparatuses are provided for detecting blur within digital images using Cepstrum analysis blur detection techniques that are able to detect motion blur and/or out-of-focus blur.
摘要:
An algorithm identifies a salient video frame from a video sequence for use as a video thumbnail. The identification of a video thumbnail is based on a frame goodness measure. The algorithm calculates a color histogram of a frame, and then calculates the entropy and standard deviation of the color histogram. The frame goodness measure is a weighted combination of the entropy and the standard deviation. A video frame having the highest value of frame goodness measure for a video sequence is determined as the video thumbnail for a video sequence.
摘要:
An implementation of a technology, described herein, for relevance-feedback, content-based image retrieval minimizes the number of iterations for user feedback regarding the semantic relevance of exemplary images while maximizing the resulting relevance of each iteration. One technique for accomplishing this is to use a Bayesian classifier to treat positive and negative feedback examples with different strategies. In addition, query refinement techniques are applied to pinpoint the users' intended queries with respect to their feedbacks. These techniques further enhance the accuracy and usability of relevance feedback. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
A face recognition system and process for identifying a person depicted in an input image and their face pose. This system and process entails locating and extracting face regions belonging to known people from a set of model images, and determining the face pose for each of the face regions extracted. All the extracted face regions are preprocessed by normalizing, cropping, categorizing and finally abstracting them. More specifically, the images are normalized and cropped to show only a persons face, categorized according to the face pose of the depicted person's face by assigning them to one of a series of face pose ranges, and abstracted preferably via an eigenface approach. The preprocessed face images are preferably used to train a neural network ensemble having a first stage made up of a bank of face recognition neural networks each of which is dedicated to a particular pose range, and a second stage constituting a single fusing neural network that is used to combine the outputs from each of the first stage neural networks. Once trained, the input of a face region which has been extracted from an input image and preprocessed (i.e., normalized, cropped and abstracted) will cause just one of the output units of the fusing portion of the neural network ensemble to become active. The active output unit indicates either the identify of the person whose face was extracted from the input image and the associated face pose, or that the identity of the person is unknown to the system.
摘要:
A system and methods use music features extracted from music to detect a music mood within a hierarchical mood detection framework. A two-dimensional mood model divides music into four moods which include contentment, depression, exuberance, and anxious/frantic. A mood detection algorithm uses a hierarchical mood detection framework to determine which of the four moods is associated with a music clip based on the extracted features. In a first tier of the hierarchical detection process, the algorithm determines one of two mood groups to which the music clip belongs. In a second tier of the hierarchical detection process, the algorithm then determines which mood from within the selected mood group is the appropriate, exact mood for the music clip. Benefits of the mood detection system include automatic detection of music mood which can be used as music metadata to manage music through music representation and classification.
摘要:
An image retrieval system performs both keyword-based and content-based image retrieval. A user interface allows a user to specify queries using a combination of keywords and examples images. Depending on the input query, the image retrieval system finds images with keywords that match the keywords in the query and/or images with similar low-level features, such as color, texture, and shape. The system ranks the images and returns them to the user. The user interface allows the user to identify images that are more relevant to the query, as well as images that are less or not relevant to the query. The user may alternatively elect to refine the search by selecting one example image from the result set and submitting its low-level features in a new query. The image retrieval system monitors the user feedback and uses it to refine any search efforts and to train itself for future search queries. In the described implementation, the image retrieval system seamlessly integrates feature-based relevance feedback and semantic-based relevance feedback.
摘要:
A system and methods analyze music to detect musical beats and to rectify beats that are out of sync with the actual beat phase of the music. The music analysis includes onset detection, tempo/meter estimation, and beat analysis, which includes the rectification of out-of-sync beats.
摘要:
A system and methods use music features extracted from music to detect a music mood within a hierarchical mood detection framework. A two-dimensional mood model divides music into four moods which include contentment, depression, exuberance, and anxious/frantic. A mood detection algorithm uses a hierarchical mood detection framework to determine which of the four moods is associated with a music clip based on the extracted features. In a first tier of the hierarchical detection process, the algorithm determines one of two mood groups to which the music clip belongs. In a second tier of the hierarchical detection process, the algorithm then determines which mood from within the selected mood group is the appropriate, exact mood for the music clip. Benefits of the mood detection system include automatic detection of music mood which can be used as music metadata to manage music through music representation and classification.
摘要:
The described arrangements and procedures identify an image's orientation by extracting features from peripheral portions of the image. The procedure evaluates the extracted features based on training image feature orientation classification models to identify the image's orientation.