摘要:
A main pole layer having at least a leading taper and trimmed pole tip portion is described. The leading taper increases head field up to ≧15000 Oe even for narrow track widths approaching 50 nm. For MAMR applications, a STO and trailing shield are sequentially formed on a trailing pole tip side. Furthermore, full side shields may be added to reduce fringing field. Another embodiment involves including both of a leading taper and trailing taper at the pole tip where leading taper angle is between 20° and 60° and trailing taper angle is from 10° to 45°. A method is provided for forming various embodiments of the present invention. A key feature is that milling depth at an effective neck height distance is greater than or equal to the pole tip thickness. A self aligned STO may be formed by the same ion milling step that defines track width.
摘要:
An improved magnetic shield for a perpendicular magnetic write head is disclosed. Its main feature is a pair of tabs at the shield's bottom corners. Said tabs are significantly wider at their point of attachment to the shield than further away from the shield. The end portions of each tab slope upwards (away from the ABS) at an angle of about ten degrees. A process for manufacturing the shield is also disclosed.
摘要:
An improved magnetic shield for a perpendicular magnetic write head is disclosed. Its main feature is a pair of tabs at the shield's bottom corners. Said tabs are significantly wider at their point of attachment to the shield than further away from the shield. The end portions of each tab slope upwards (away from the ABS) at an angle of about ten degrees. A process for manufacturing the shield is also disclosed.
摘要:
A structure and a process for a perpendicular write pole that provides increased magnetic flux at the ABS is disclosed. This is accomplished by increasing the amount of write flux that originates above the write gap, without changing the pole taper at the ABS. Three embodiment of the invention are discussed.
摘要:
A side shield structure for a PMR write head is disclosed that narrows write width and minimizes adjacent track and far track erasure. The side shield structure on each side of the write pole has two sections. One section along the ABS and adjacent to the pole tip has a height (SSH1) defined by SSH1≦[(0.6×neck height)+0.08] microns. There is a non-magnetic gap layer between the first section and a second section that is formed adjacent to the flared sides of the main pole layer and serves to suction leakage flux from the flared portion and prevent unwanted flux from reaching the first side shield sections. A fabrication method is provided that includes electroplating the first side shield sections, depositing the non-magnetic gap layer, and then electroplating the second side shield sections. Subsequently, a main pole layer and a trailing shield are formed.
摘要:
A structure and a process for a perpendicular write pole that provides increased magnetic flux at the ABS is disclosed. This is accomplished by increasing the amount of write flux that originates above the write gap, without changing the pole taper at the ABS. Three embodiment of the invention are discussed.
摘要:
Insertion of a two part trailing shield between the write gap and the upper return pole of a magnetic write head reduces the sensitivity of the latter to increases in the current driving the field coils (beyond the required minimum). A key feature is careful control of the distance between the upper component of the write shield and the main pole. A process for manufacturing the structure is outlined.
摘要:
A side shield structure for a PMR write head is disclosed that narrows write width and minimizes adjacent track and far track erasure. The side shield structure on each side of the write pole has two sections. One section along the ABS and adjacent to the pole tip has a height (SSH1) defined by SSH1≦[(0.6×neck height)+0.08] microns. There is a non-magnetic gap layer between the first section and a second section that is formed adjacent to the flared sides of the main pole layer and serves to suction leakage flux from the flared portion and prevent unwanted flux from reaching the first side shield sections. A fabrication method is provided that includes electroplating the first side shield sections, depositing the non-magnetic gap layer, and then electroplating the second side shield sections. Subsequently, a main pole layer and a trailing shield are formed.
摘要:
A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.
摘要:
A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.