Abstract:
Provided is a low-cost catalyst that has excellent oxygen reduction reaction (ORR) catalytic activity and is useful as a catalyst for water electrolysis, an electrode catalyst for an air battery, or the like. The catalyst includes (A) Ni atoms, (B) a condensate of thiourea and formaldehyde, and (C) porous carbon.
Abstract:
A dielectric elastomer power generation system of the invention includes: a power generation unit including a dielectric elastomer power generation element having a dielectric elastomer layer flanked by two electrode layers; a step-down unit including capacitors; a power storage unit for input of an output power from the step-down unit; and a control unit that controls the connection between the step-down unit and the power generation unit or power storage unit. The step-down unit includes first diodes and second diodes, where the first diodes form a circuit that connects the capacitors in series when the power generation unit is connected to the step-down unit, and the second diodes form a circuit that connects the capacitors in parallel when the step-down unit is connected to the power storage unit. This configuration serves to store the generated power more efficiently in the power storage unit, e.g., a secondary battery.
Abstract:
Provided is a carbon film including: a plurality of fibrous carbon nanostructures; and a conductive carbon, wherein the plurality of fibrous carbon nanostructures has a BET specific surface area of 500 m2/g or more. Also provided is a method of producing a carbon film, the method including mixing a conductive carbon into a fibrous carbon nanostructure dispersion liquid containing a plurality of fibrous carbon nanostructures having a BET specific surface area of 500 m2/g or more, a dispersant, and a solvent, and subsequently removing the solvent to form a carbon film.
Abstract:
A carbon nanotube film includes an assembly of a plurality of carbon nanotubes, wherein the plurality of carbon nanotubes includes one or more carbon nanotubes having at least partially collapsed structures. A method for producing a carbon nanotube film includes forming a carbon nanotube film by removing a solvent from a carbon nanotube dispersion liquid containing the solvent, a dispersant, and a plurality of carbon nanotubes including one or more carbon nanotubes having at least partially collapsed structures.
Abstract:
A carbon nanotube fiber is provided that that has excellent properties such as electrical conductivity, thermal conductivity, and mechanical characteristics. The carbon nanotube fiber includes an assembly of a plurality of carbon nanotubes. The plurality of carbon nanotubes includes one or more carbon nanotubes having at least partially collapsed structures. Furthermore, a method for producing a carbon nanotube fiber is provided that includes spinning a carbon nanotube dispersion liquid containing a plurality of carbon nanotubes including one or more carbon nanotubes having at least partially collapsed structures, a dispersant, and a solvent by extruding the carbon nanotube dispersion liquid into a coagulant liquid.
Abstract:
Provided are carbon nanotubes that allow effective utilization of the insides thereof as-synthesized, without undergoing opening formation treatment. The provided carbon nanotubes have not undergone opening formation treatment and exhibit a convex upward shape in a t-plot obtained from an adsorption isotherm.
Abstract:
Provided is a method for efficiently producing a carbon nanotube dispersion liquid in which less-damaged carbon nanotubes are highly dispersed. The method for producing a carbon nanotube dispersion liquid includes: (A) obtaining a carbon nanotube dispersion liquid by applying a shear force to a coarse dispersion liquid that includes carbon nanotubes having a specific surface area of 600 m2/g or more to whereby disperse the carbon nanotubes, wherein the step (A) includes at least one of applying a back pressure to the carbon nanotube dispersion liquid and cooling the carbon nanotube dispersion liquid.