Abstract:
Disclosed are a method, device and system for signalling transmission in a virtual multi-antenna system. The method includes N terminals receive CSI-RSs from a Node B, N being a positive integer larger than or equal to 2; and one terminal in M terminal(s) calculates channel related information from the Node B to the terminal according to the received CSI-RS, and sends the channel related information to L terminal(s), wherein the M terminal(s) form(s) a subset of the N terminals, M is smaller than or equal to N and larger than or equal to 1, and L is smaller than or equal to N and larger than or equal to 1. A first sending unit in the device is configured to calculate channel related information from a Node B to one terminal in M terminal(s) according to a CSI-RS received by the terminal, and send the channel related information to L terminal(s).
Abstract:
Disclosed are a data transmission method and device, and a storage medium. The data transmission method may include: receiving an energy supply request message sent by a second communication node; and sending an energy supply request response message to the second communication node.
Abstract:
A method and an apparatus for determining a timing advance, and a device and a non-transitory computer-readable storage medium. The method may include: obtaining, by a terminal device, timing advance (TA) list information, where the TA list information is sent to the terminal device by a base station or is configured by default to be stored in the terminal device, and the TA list information indicates at least one TA list, each TA list including at least one TA value; obtaining, by the terminal device, a target TA value according to the TA list information; and adjusting, by the terminal device, a TA for uplink channel transmission using the target TA value.
Abstract:
A data modulation method, a communication device and a storage medium are disclosed. The data modulation method includes, performing a preset modulation operation on B consecutive data blocks, and configuring the B consecutive data blocks to have a same head-end reference signal sequence and/or a same tail-end reference signal sequence, inserting Z zeros between adjacent time domain data of the B consecutive data blocks; performing a filtering operation on the B consecutive data blocks into which Z zeros have been inserted, and transmitting the filtered data on a physical resource, where B is greater than or equal to 2 (i.e., B≥2), and Z is greater than or equal to 0 (i.e., Z≥0).
Abstract:
Methods, apparatus, and systems for increasing spectral efficiency for transmissions with different numerologies. In one example aspect, a wireless communication method. The method includes operating, by a communication device, a first transmission band associated with a first numerology. The first transmission band comprises a first subcarrier spacing Δf1 and a first symbol length of T1 in time domain. The method includes operating, by the communication device, a second transmission band associated with a second numerology. The second transmission band comprises a second subcarrier spacing Δf2. The method also includes operating, by the communication device, a third transmission band positioned between the first transmission band and the second transmission band. The third transmission band comprises a subcarrier spacing equal to the second subcarrier spacing Δf2 and a symbol length equal to the first symbol length T1.
Abstract:
Provided are an information feedback method and apparatus, an information receiving method and apparatus, a device, and a storage medium. The information feedback includes the following: a second node configures a report configuration and sends the report configuration to a first node; the first node receives the report configuration sent by the second node and determines channel state information according to the report configuration, where the channel state information includes a reference signal, and the reference signal satisfies a grouping criterion associated with the report configuration; the channel state information is fed back to the second node through a report instance; and the second node receives the channel state information fed back by the first node through the report instance.
Abstract:
Disclosed are a signal transmission method and device, and a computer storage, including that: a base station sends or receives a signal within a sweep time interval, an access signal time interval, which is comprised of sweep time blocks sweep time blocks. The access signal time interval includes a downlink access signal time interval and an uplink access signal time interval. The base station sends the signal over the downlink access signal time interval, and receives the signal over the uplink access signal time interval. A terminal sends or receives a signal within the access signal time interval which is comprised of the sweep time blocks. The terminal sends the signal over the uplink access signal time interval, or receives the signal over the downlink access signal time interval.
Abstract:
Disclosed are a signal transmission method and device, and a computer storage, including that: a base station sends or receives a signal within a sweep time interval, an access signal time interval, which is comprised of sweep time blocks sweep time blocks. The access signal time interval includes a downlink access signal time interval and an uplink access signal time interval. The base station sends the signal over the downlink access signal time interval, and receives the signal over the uplink access signal time interval. A terminal sends or receives a signal within the access signal time interval which is comprised of the sweep time blocks. The terminal sends the signal over the uplink access signal time interval, or receives the signal over the downlink access signal time interval.
Abstract:
Disclosed are a data transmission method and apparatus. The method includes: a transmission node acquiring information about a data transmission mode, herein the information about the data transmission mode includes a rapid data transmission mode in which a time-domain length of data transmission is configured based on a time-domain symbol; and the transmission node transmitting data according to the acquired data transmission mode. In the data transmission method, the time-domain length of data transmission is configured based on the time-domain symbol, the setting of the time-domain length of data transmission is flexible, multiple opportunities of data transmission can exist in one subframe, resources used for data transmission can be guaranteed to be found rapidly when there is a data transmission demand, thus rapid data transmission is realized and data transmission delay is reduced.
Abstract:
Provided is a method for sending an in-band positioning signal and in-band positioning system in a communication network. The system includes: a Position Management Station (PMS), arranged to manage one or more Position Service Stations (PSSs) and provide a synchronization reference clock for the one or more PSSs; a positioning center network element, arranged to provide position estimation information for a terminal based on position information of the one or more PSSs and send the position estimation information to the terminal; and the one or more PSSs, of which each PSS uses a same frequency band used by the communication network and is arranged to generate an in-band positioning signal for measuring a distance, regulate a sending clock of the in-band positioning signal according to a difference value between a local sending clock and the synchronization reference clock and send the in-band positioning signal to the terminal.