Abstract:
A 14C testing bottle, a 14C testing device, a 14C testing method, a sampling and preparation system and its implementation method are provided. The 14C testing bottle includes a pressure-bearing shell and a sample bin positioned in the pressure-bearing shell. A cavity is arranged in the sample bin and the 14C testing bottle is provided with an injection port connected to the cavity. The sample bin may diffuse the light produced in the cavity and at least part of the sample bin is transparent. An optical fiber channel is set on the pressure-bearing shell. One end of the optical fiber channel is connected with an external scintillation counter, and the other end of the optical fiber channel is connected with the transparent part of the sample bin. The 14C testing bottle may measure the 14C content in the carbon dioxide sample rapidly.
Abstract:
A device of high-temperature solar gas turbine power generation with thermal energy storage includes a combustion chamber, a solar receiver, a thermochemical energy storage tank, a triple valve A and a triple valve B. The thermochemical energy storage tank has a high-temperature side and a low-temperature side. One outlet of the triple valve A is connected to the compressed air inlet of the solar receiver, and the other outlet is connected to the inlet of the triple valve B. One outlet of the triple valve B is connected to the low-temperature side of the thermochemical energy storage tank, and the other outlet is connected to the inlet of the combustion chamber.
Abstract:
Disclosed is a method for regenerating a SCR denitration catalyst assisted by microwaves. The method comprises: (1) a poisoned SCR denitration catalyst is immersed in deionized water, and the SCR denitration catalyst is cleaned by a bubbling method; (2) the SCR denitration catalyst is transferred to a container containing a pore-expanding solution for a soaking treatment; (3) the SCR denitration catalyst is transferred to a microwave device and treated for 1-10 minutes; (4) the SCR denitration catalyst is transferred to a container with an activating liquid and impregnated for 1-4 hours; (5) the SCR denitration catalyst is dried with microwaves for 1-20 minutes; and (6) the SCR denitration catalyst is calcined under conditions of 500-600° C. for 4-7 hours. The present invention has readily available raw materials, is simple and energy-saving in device and process, and is suitable for industrial scale regeneration. The catalyst treated by the method of the present invention has the advantages of loose pore channels, obviously optimized pore structures, significantly improved catalyst surface conditions, high activity, and good economic benefits.