摘要:
The present invention relates to a method for measuring radioactivity of radioactive waste, the method comprising an adsorption step (A) of selectively adsorbing a radioactive substance comprising at least one from among radioactive iodine and radioactive cesium from radioactive waste containing radioactive substances on an adsorption member for adsorbing a radioactive substance, and a measurement step (B) of measuring radioactivity of the radioactive substance.
摘要:
A low cost, rapid, flexible radiation detector uses inorganic metal halide precursors and dyes that respond to self-quenching hybrid scintillation. Remote, high-contrast, laser sensing can be used to determine when exposure of the detector to radiation occurs (even temporally).
摘要:
A small, low power, solid state particle counter may be configured to detect radiation. A scintillator may be doped to emit light in a predetermined energy range when impacted by radiation particles. A photodiode attached to or held against the scintillator may be configured to detect the emitted light in the predetermined energy range and output a current proportional to an amount of the emitted light.
摘要:
An apparatus for use in making localized passive measurements of electromagnetic radiation emitted from an object located in a radioactive environment includes a hollow elongate conduit having a first end, a second end, and a reflective inner surface. The first end of the conduit is positionable in the radioactive environment proximate the object, and the second end of the conduit is positionable outside the radioactive environment. The conduit has at least one bend between the first end and the second end, such that light entering the first end of the conduit is reflected by the inner surface of the conduit at least once as it travels through the conduit before reaching the second end. A detector in optical communication with the second end of the conduit is configured to detect electromagnetic radiation that reaches the second end.
摘要:
A 14C testing bottle, a 14C testing device, a 14C testing method, a sampling and preparation system and its implementation method are provided. The 14C testing bottle includes a pressure-bearing shell and a sample bin positioned in the pressure-bearing shell. A cavity is arranged in the sample bin and the 14C testing bottle is provided with an injection port connected to the cavity. The sample bin may diffuse the light produced in the cavity and at least part of the sample bin is transparent. An optical fiber channel is set on the pressure-bearing shell. One end of the optical fiber channel is connected with an external scintillation counter, and the other end of the optical fiber channel is connected with the transparent part of the sample bin. The 14C testing bottle may measure the 14C content in the carbon dioxide sample rapidly.
摘要:
Each adapter disposed on a rack includes a pair of arms that configure an opening/closing mechanism. During rack conveyance, a guiding block is slotted between a pair of legs contained in the rack. The opening/closing mechanism being abutted against the guiding block causes the opening/closing mechanism to perform an opening/closing operation. When the state of the opening/closing mechanism is changed from closed to open, a pre-measurement sample container is passed from a sample storage unit to a lifting mechanism. Subsequent to the post-measurement sample container being returned to the sample storage unit, the state of the opening/closing mechanism is changed from open to closed.
摘要:
An apparatus and method for measuring three-dimensional radiation dose distributions with high spatial and temporal resolution using a large-volume scintillator. The scintillator converts the radiation dose distribution into a visible light distribution. The visible light is transported to one or more photo-detectors, which measure the light intensity. The light signals are processed to correct for optical artifacts, and the three-dimensional light distribution is reconstructed. The reconstructed light distribution is post-processed to convert light amplitudes to measured radiation doses. The high temporal resolution of the detector makes it possible to observe the evolution of a dynamic dose distribution as it changes over time. Integral dose distributions can be measured by summing the dose over time.
摘要:
Embodiments incorporate a method and apparatus for detection of radiation. Embodiments detect fast and/or thermal neutrons. Embodiments detect neutrons in high backgrounds of gamma rays. Embodiments can have high sensitivity and/or high gamma discrimination. Embodiments include a given single material that detects fast neutrons and simultaneously detect gamma rays with moderate energy resolution. Embodiments utilize liquid, viscous liquid, gel, and/or solid scintillating materials. Embodiments incorporate a scintillating matrix, such as a liquid, having a highly polar matrix, such as a liquid solvent, dissolved dyes, and a high concentration of a dissolved organo metallic compound. The use of a single material for a large area detector of fast neutrons and gamma rays can provide material and cost benefits.
摘要:
In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.
摘要:
A device for detecting ionizing radiation includes a radiation interaction region configured to generate light in response to an interaction with the ionizing radiation, an optical gain medium region in optical communication with the radiation interaction region and configured to amplify the light, and an energy source coupled to the optical gain medium region and configured to maintain a state of population inversion in the optical gain medium region. The optical gain medium region has an emission wavelength that corresponds with a wavelength of the light generated by the radiation interaction region.