摘要:
A system and method for controlling tracking in a holographic data storage system, including: impinging a beam on a holographic data disc, wherein the beam is reflected from a micro-hologram disposed within the holographic data disc; detecting the reflected beam from the holographic data disc by a multi-element detector; and analyzing a pattern detected by multi-element detector to generate a tracking error signal.
摘要:
A system and method of controlling position of a pick-up head of an optical drive, including manipulating the position of the pick-up head as a primary variable in a cascade control scheme, and manipulating current flowing through the pick-up head as a secondary variable in the cascade control scheme.
摘要:
A system for use with a data storage media having at least one groove proximate a surface thereof and a plurality of volumes therein, including: objective lensing; a first tracking error detector optically coupled to the objective lensing and being responsive to reflections from the at least one groove; a first actuator coupled and responsive to the first tracking error detector; a second tracking error detector optically coupled to the objective lensing and responsive to reflections from micro-holograms contained in at least some of the volumes; and, a second actuator coupled and responsive to the second tracking error detector; wherein the first and second actuators cooperate to selectively position the objective lensing to focus a light beam into a target one of the volumes.
摘要:
A data storage device including: a plastic substrate having a plurality of volumes arranged in tracks along a plurality of vertically stacked, laterally extending layers therein; and, a plurality of micro-holograms each contained in a corresponding one of the volumes; herein, the presence or absence of a micro-hologram in each of the volumes is indicative of a corresponding portion of data stored.
摘要:
A data storage device comprises a substrate having oppositely disposed surfaces and a plurality of volumes arranged along tracks between the surfaces; a plurality of micro-holograms each contained in a corresponding one of the volumes; and, at least one groove in at least one of the surfaces and being operative to diffract light through the at least one surface and into the volumes; wherein, the presence or absence of a micro-hologram in a stacked layer in each of the volumes is indicative of a corresponding portion of data stored.
摘要:
The present techniques provide methods and systems for recording micro-holograms on a holographic disk using a plurality of counter-propagating light beams in parallel. The parallel counter-propagating light beams overlap to form interference patterns on a data layer and over multiple data tracks in the holographic disk. Rotating the disk enables the parallel recording of micro-holograms over multiple data tracks, thus reducing recording time. Further, the illumination pattern may include illuminated spots and non-illuminated regions, such that each illumination spot may cover a relatively small fraction of the data layer plane, possibly controlling the depth spread of the recorded micro-hologram. In some embodiments, data in the parallel signal beams may be retrieved from a master holographic disk or may be modulated into the parallel signal beams.
摘要:
A system and method for replicating optical data storage discs (e.g., holographic data storage discs) having multiple layers of data. Master discs providing for respective single layers of data are utilized, and each respective single layer of data from the master discs are replicate onto the optical data storage disc.
摘要:
Methods and systems are provided for recording micro-holograms in a holographic disk. Disk tilting or disk imperfections may cause counter-propagating recording and reference beams to deviate from the target data position in the disk. In some embodiments, a tracking beam is directed to a tracking position in the disk, and deviation of the tracking beam from the tracking position may indicate tracking and/or focusing errors of the recording and/or reference beams. A detector may generate an error signal in response to such errors. A first servo-mechanical system may actuate a first optical head (e.g., transmitting the reference and tracking beams) to compensate for such errors, and a second servo-mechanical system may actuate a second optical head (e.g., transmitting the recording beam) to follow the actuation of the first servo system, such that an interference of the reference beam and the recording beam may be maintained in the target data position.
摘要:
Techniques are provided for controlling the reading of optical data from a master disk in a holographic replication system. Imperfections in the master disk or movement of the disk during a recording process may cause source beams to deviate from target data tracks. In some embodiments, a detector system is used to determine the focus and alignment of the source beams on the master disk, as well as the tilt and rotation of the disk with respect to the holographic replication system. The detector system may detect deviations in the intensity distribution of the reflections of the source beams and generate an error signal corresponding to focusing, tracking, tilt, and/or rotational errors. Servo-mechanical devices may actuate optical components to compensate for such errors.
摘要:
The present techniques provide systems and methods for modulation coding of data on optical disks, such as holographic data disks, and techniques for reading that data back from the disks. The techniques involve parsing a bit stream into a sequence of individual bit-patterns, and then using the individual bit patterns to select a symbol, or matrix, from a lookup table of previously selected matrices. The symbols are selected according to predetermined criteria that may help make the disk more resistant to interferences and errors, such as surface scratches, and the like. For example, criteria that may be used to select the symbols are the number of reflective and non-reflective regions within each matrix, and the number of sequential reflective regions, among others. The symbols may be written to the disk in a two-dimensional fashion, e.g., across adjacent tracks, or in a three-dimensional fashion, e.g., across adjacent data layers.