Abstract:
The invention relates to a method for recording a plurality of scatter volume holograms in a photopolymeric recording medium, the method comprising at least the following steps providing a first laser light source, providing a photopolymeric recording medium comprising a substrate and a photoactive layer, wherein the photopolymeric recording medium has an index modulation Δn of at least 0.04 and a thickness d of the photoactive layer of at least 25 μm, irradiating the photopolymeric recording medium with the first laser light beam generated by the first laser light source with a minimum irradiation energy dosage of 3*Di, Di; being the inhibition dosage of the photoactive layer, wherein the irradiation of the photopolymeric recording medium is performed such that the light of the irradiating first laser light beam is scattered at scattering centers, the scattering centers being generated by the chemical react ion in the photoactive layer induced by the first laser light beam thus forming a plurality of scatter volume holo grams by interaction between the irradiating first laser light beam and the scattered light of the first laser light beam.
Abstract:
The present invention is related to an holographic probe device for recording a gabor hologram comprising: a coherent optical fiber bundle comprising a distal end and a proximal end; a recording medium optically coupled to the proximal end of the coherent optical fiber bundle; a light source producing in use a single light beam, illuminating the distal end of the coherent optical fiber bundle and the object to be observed.
Abstract:
The present invention is related to an holographic probe device for recording gabor hologram comprising: a coherent optical fiber bundle comprising a distal end and a proximal end; a recording medium optically coupled to the proximal end of the coherent optical fiber bundle; a light source producing in use a single light beam, illuminating the distal end of the coherent optical fiber bundle and the object to be observed.
Abstract:
A holographic recording apparatus is provided and includes: a signal light generation section that generates signal light modulated according to digital data; a reference light generation section that generates reference light modulated by means of a pixel pitch; a adding section that adds, in proximity to a light-convergence position where the signal light and the reference light come close to each other or overlap each other, a low-order component of the signal light obtained by Fourier transform and a high-order component of the reference light obtained by Fourier transform, the high-order component of the reference light having a spatial frequency region differing from that of the low-order component of the signal light; and an illumination optical system that irradiate an optical recording medium with the added signal and reference light.
Abstract:
A holographic storage system having an improved data page quality is described. The holographic storage system includes a special optical filter or a special light source for emphasizing the high frequency components of a reference beam and/or an object beam. This is achieved by an optical filter arranged in a Fourier plane, which has a higher attenuation at the center than at the edge. Alternatively, an adapted light source for generating the reference beam and/or the object beam is arranged in a Fourier plane. The light beam emitted by the light source has a higher intensity close to the edge than at is the center.
Abstract:
A hologram recorder A1 includes a light source (1) of a coherent light beam and a spatial light modulator (5A) for modulating a part of the light beam from the light source (1) into a recording beam which carries two-dimensional information. Another part of the light beam is used as a reference beam to interfere with the recording beam. The recording beam and the reference beam are directed to a hologram recording medium (B). A semi-translucent optical device (4) is disposed between the light source (1) and the spatial light modulator (SA) for letting a part of the beam travel to the spatial light modulator (5A) as a transmitted beam while letting another part of the beam travel to the hologram recording medium (B) as a reflected beam. The recording beam and the reference beam, after being separated from each other by the optical device (4) as the transmitted beam and the reflected beam, travel along the same optical path (L) to irradiate the hologram recording medium (B).
Abstract:
A method of fabricating a holographic mask includes the steps of providing an illumination source and a non-opaque object mask. The source is for generating a coherent illumination beam directed along an axis. The object mask is capable of transmitting a portion of the illumination beam as undiffracted reference wavefronts. The object mask has one or more substantially transparent elements for creating overlapping object wavefronts when the illumination beam is incident thereon. The object mask is disposed in the illumination beam. A holographic recording medium is provided in the illumination beam in line optically with the object mask. The object mask is illuminated with the illumination beam, thereby causing the object mask to allow undiffracted reference wavefronts to pass therethrough. The illumination directed along the axis causes the one or more substantially transparent elements to create object wavefronts which interact with the undiffracted reference wavefronts to create an interference pattern.
Abstract:
A method for producing a hologram recording an interference fringe formed by an object light and a reference light on a photosensitive dry plate, and the object light either having diffusing and scattering characteristics or being passed through an optical diffusion body, mainly includes the following steps: In a first step, a ratio &eegr;RO/&eegr;OO of a first diffraction efficiency &eegr;OO and a second diffraction efficiency &eegr;RO, is calculated. The diffraction efficiency &eegr;OO is dependent on two object light beams. The efficiency &eegr;RO is dependent on the object light and the reference light. In a second step, the intensity EO of the object light and the intensity ER of the reference light is adjusted in such a way that the ratio &eegr;RO/&eegr;OO is set to at least 10 and the efficiency &eegr;OO does not exceed 5%. A display device using the above hologram is structured by a display unit for generating a signal light; a hologram screen formed by either reflection or transmission hologram, and a projecting unit for projecting the signal light to the hologram screen. According to the present invention, it is possible to easily produce a hologram, for example, a screen hologram, having no cloudiness or cloudy state when an observer observes an image displayed on the screen, and to a display device using the above hologram screen.
Abstract:
A holographic lithography tool (110) for generating a light interference pattern used to expose a photosensitive medium (119) employs a refracting prism (121) in the optical path between divergent illuminating beams (127a, 127b). The prism is optically coupled to the photosensitive medium via an index matching fluid (123). By increasing the incident beam angle and the index of refraction, the prism reduces the size of features recorded in the photosensitive material. The divergent illuminating beams are generated by a beam delivery system which preferably employs easily adjustable fiber optic cables (176, 184). Use of the prism coupling technique facilitates use of fiber-optic-compatible wavelengths in the blue region of the spectrum in a variety of applications, such a distributed feedback grating fabrication.
Abstract:
The fiber optic-based correlating and sensing system (the System) utilizes length of optical fiber through which the object beam travels prior to being incident on the holographic plate. First, a matched filter is created on the holographic plate of the initial condition of the environment. Then when the plate is re-placed in its original position in the System and the reference beam is blocked from reaching the plate, a correlation peak appears as the object beam passes through the holographic plate. To use the System as a correlator, the object beam is transmitted through an input scene prior to its travel through the optical fiber. The changes in the input scene from the initial scene causes broadening of the shape of and degradation of intensity of the correlation peak. To use the System as a sensor, the object beam travels through the optical fiber acquiring information regarding the environment surrounding the fiber, such as pressure, temperature, sound, electric and magnetic fields. Again, the changes in the environment are indicated by the broadening shape and decreased intensity level of the correlation peak.