Abstract:
Systems and methods are described for optically powered optically controlled optical switches. A method includes powering an optical switch with a communications data signal; and controlling the optical switch with the communications data signal. An apparatus includes a primary optical input port; a secondary optical input port; an optical tap coupled to the primary optical input port; an optical switch coupled to the optical tap and to the secondary optical input port; an optical-to-electrical signal converter coupled to the optical tap; a control circuit coupled to the optical-to-electrical signal converter and to the optical switch; an electrical energy storage circuit coupled to the control circuit; an optical-to-electrical power converter coupled to the electrical energy storage circuit and to the optical switch; and an optical output port coupled to the optical switch, wherein the optical-to-electrical signal converter can transform, to electrical energy, optical energy from a communications data signal that arrives at the optical tap.
Abstract:
A method includes reading operation parameters from a non-volatile memory located in a pluggable module that is coupled to a host module; processing the operational parameters with a processor located in the host module to control operation of a predistortion circuit located in the host module; adding predistortion to a signal with the predistortion circuit located in the host module and then sending the predistorted signal to the pluggable module. An apparatus includes a host module including a predistortion circuit and a processor coupled to the predistortion circuit; and a pluggable module coupled to the host module, wherein the pluggable module includes a non-volatile memory containing operational parameters for the predistortion circuit of the host module, wherein the operational parameters are processed by the processor of the host module to control the predistortion circuit of the host module.
Abstract:
Methods and apparatus are described for “Smart” RF over Glass (RFoG) CPE Unit with Seamless PON Upgrade Capability. A method includes operating a customer premises equipment device including transporting upstream cable return services with a laser; and switching a drive source for the upstream laser from an analog driver to a digital driver by using a managed electrical switch to reuse a wavelength of the laser. An apparatus includes a customer premises equipment device including a laser for transporting upstream cable return services; and a managed electrical switch coupled to the laser that is used to switch a drive source for the upstream laser to reuse a wavelength of the laser.
Abstract:
Inserting protocol adaptation layers into access equipment to translate data over cable service interface specification services control messages to the corresponding messages in the other (multiple) heterogeneous access specification(s) includes AMTS DOCSIS-to-access protocol translation and AMTS access-to-DOCSIS protocol translation. A method of expanding DOCSIS into an alternative access network includes deploying a protocol adaptation layer in access equipment to translate DOCSIS control messages to corresponding messages for use in the alternative access network. Translating DOCSIS control messages to corresponding messages for use in the alternative access network includes AMTS DOCSIS-to-access protocol translation and AMTS access-to-DOCSIS protocol translation.
Abstract:
Systems and methods are described for an optiplex. A method includes: conveying a first narrowcast signal to a first optical combiner; conveying a second narrowcast signal to a second optical combiner; tapping into said first narrowcast signal; monitoring a first characteristic of said first narrowcast signal; tapping into said second narrowcast signal; monitoring a second characteristic of said second narrowcast signal; combining a broadcast signal with the first narrowcast signal using the first optical combiner; and combining said broadcast signal with the second narrowcast signal using the second optical combiner. An apparatus includes: a first optical input; an optical splitter connected to said first optical input; a first optical waveguide connected to said optical splitter; a second optical waveguide connected to said optical splitter; a first optical combiner connected to said first optical waveguide; a second optical combiner connected to said second optical waveguide; a second optical input; an optical demultiplexer connected to said second optical input; a third optical waveguide connected to said optical demultiplexer; a fourth optical waveguide connected to said optical demultiplexer; a first tap coupler connected to said third optical waveguide and said first optical combiner; a second tap coupler connected to said forth optical waveguide and said second optical combiner; a first optical signal sensor coupled to both said first tap coupler and a signal processing unit; and a second optical signal sensor coupled to both said second tap coupler and said signal processing unit.
Abstract:
A bidirectional optical fiber path includes a primary optical fiber path; a secondary optical fiber path coupled to the primary optical fiber path; an optical coupler coupled to both the primary optical fiber path and the secondary optical fiber path; an optical switch coupled to both the primary optical fiber path and the secondary optical fiber path, the optical switch selecting a path of lower optical loses; an optical cross-bar switch coupled to both the primary optical fiber path and the secondary optical fiber path and located between the optical coupler and the optical switch; a primary upstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary upstream light detector coupled to the secondary optical path between the optical cross bar switch and the optical switch; a primary downstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary downstream light detector coupled to the secondary optical path between the optical cross bar switch and the optical switch; and a stabilizing downstream light detector coupled to the primary optical fiber path between the optical coupler and the optical cross bar switch.
Abstract:
A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit. Another embodiment of the disclosure performs simultaneous, and independent, compensation of second-order distortions generated by both the dispersion-slope of a first optical component and the dispersion of a second optical component. Other embodiments of the disclosure perform adaptive predistortion for compensation of distortions generated by the dispersion-slope of a first optical component and the dispersion of a second optical component to maintain optimum compensation even if the dispersion properties of the optical components change with time.
Abstract:
A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit. Another embodiment of the disclosure performs simultaneous, and independent, compensation of second-order distortions generated by both the dispersion-slope of a first optical component and the dispersion of a second optical component. Other embodiments of the disclosure perform adaptive predistortion for compensation of distortions generated by the dispersion-slope of a first optical component and the dispersion of a second optical component to maintain optimum compensation even if the dispersion properties of the optical components change with time.
Abstract:
A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or interne telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture.
Abstract:
A method and system can propagate upstream cable modem signals and radio-frequency (RF) return video control signals over the same passive optical network (PON). The method and system can include various combinations of hardware and software to support this operation. Three exemplary embodiments of optical network terminals (ONT) of a DPON system improve performance of the system by ensuring that, in the event the upstream transmitters of two ONTs are turned on simultaneously, they will not interfere with each other. The system is designed such that in a situation of competing transmissions, the one which is received and processed by the head end out of two competing transmissions originating from a set top box and a cable modem, will be the one originating from the cable modem, which may use the DOCSIS cable modem protocol.