Abstract:
A method of using resource blocks in a communication system with a plurality of Base Stations (BSs), including assigning resource blocks to a first BS, the first BS communicating to a second BS a message comprising information about at least one resource block assigned to the first BS and not planned to be used by the first BS, and the second BS receiving the message. Optionally, the second BS using the at least one resource block. Related apparatus and methods are also described.
Abstract:
A method provides for conveying wireless communications in a radio network using OFDMA or multi-carrier technologies. The wireless network includes a first relay station and a subscriber station operative to communicate with that first relay station. The first relay station is operative to simultaneously transmit to or receive communications from at least two recipients along a shared frequency channel. The two recipients are wireless entities selected from among: the base station and a subscriber station; or another relay station and a subscriber station; or the base station and another relay station. The wireless communications network can further include a second relay station, which is operative to simultaneously transmit to or receive communications from at least two recipients selected from among: the first relay station and a subscriber stations, or a third relay station and a subscriber station, or the first relay station and a third relay station.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. The method disclosed includes providing synchronization information to enable the plurality of Base Stations to start transmitting MBS data at a synchronized starting time point. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method for use by a subscriber device associated with a LAN in a wireless network, to enable provisioning of services to another subscriber device associated with that LAN. The method includes (i) at the first subscriber device, receiving an outgoing packet generated by the other subscriber device associated, wherein that outgoing packet has been tagged with a VLAN label; (ii) forwarding the outgoing packet towards a source MAC address of the subscriber device; (iii) associating a DSCP value with the outgoing packet; (iv) removing VLAN label and Ethernet MAC layer from the outgoing packet and forwarding the remaining IP packet to a MAC convergence sub-layer; (v) at the MAC convergence sub-layer, forwarding the outgoing packet to a service flow determined by using a DSCP value associated with the outgoing packet; and forwarding the outgoing packet along an air-link service flow connection.
Abstract:
A method is provided for combining corrupted messages received in a wireless network which comprises the following steps: (a) receiving a first message transmitted from one of a plurality of communication devices, wherein that first message is received as a corrupted message; (b) following the receipt of the first corrupted message, receiving a first plurality of messages, wherein the first plurality of messages are received as corrupted messages and wherein at least one of the first plurality of corrupted messages is essentially identical to the first message; (c) combining the first corrupted message with the at least one of the first plurality of corrupted messages that is essentially identical to that first message to form a combined message; and (d) deriving from the combined message information which was transmitted within the first message.
Abstract:
A client terminal, such as a customer premises equipment (CPE), for receiving a communication signal in a plurality of reception configurations. The client terminal comprises an antenna unit having a plurality of reception configurations for receiving communication signal having a plurality of frames, each the frame having a predefined frame segment, a receiver, a switching module configured for switching between operational and testing receptions of the communication signal respectively by the receiver via the antenna unit in operational and testing configurations, and a timing circuit configured for timing the switching during the operational reception to allow the receiver to receive the testing reception when the predefined frame segment is received via the antenna unit in operational configuration.
Abstract:
A method for carrying out a handover procedure, following which a mobile terminal (MS) currently in communication with a first base station (BS), will communicate via a second BS. The method includes upon initiating a handover procedure, determining that the MS will receive all future Internet Protocol (IP) packets via the second base station, following this determination and prior to establishing a connection between the MS and the second BS, forwarding all IP packets being addressed to the MS to the second BS, and buffering the received IP packets thereat, and upon establishing a connection between the MS and the second BS, forwarding the IP packets that were buffered at the second BS to the MS, wherein the buffered IP packets are delivered to the MS before delivering any packets addressed thereto along a new path extending to the second BS which does not include the first BS.