Abstract:
A member has a wave inhibitor adapted to control the effects of a wave of longitudinally displaced material positioned ahead of an expansion mandrel used to expand the member. The wave inhibitor has a decreasing transverse cross-sectional area to diminish the effects attributable to the wave, such as workpiece distortions, material upset of the workpiece, lengthening of the member, and excessively high strains in the workpiece. The wave inhibitor can also induce radially compressive stresses in the workpiece and produce an interference fit.
Abstract:
A controller for a die cushion mechanism includes: a spring element that is displaced according to force between the die cushion mechanism and a slide; a force instructor that instructs force; a force detector that detects force; and a speed instruction generator that generates a speed instruction of the servo motor, based on a force instruction value instructed by the force instructor and a force detection value detected by the force detector. The speed instruction generator generates the speed instruction by multiplying a force gain by a force difference determined from a difference between the force instruction value and the force detection value. The speed instruction generator changes the force gain, based on a spring constant corresponding value of the spring element determined from a force indicator that works between the slide and the die cushion.
Abstract:
A device for controlling a die cushion mechanism including a servo-motor as a drive source and producing a force adapted to be applied to a slide in a press machine. The device includes a section for commanding a force to be produced by the die cushion mechanism; a section for detecting a force produced by the die cushion mechanism and applied to the slide; a section for detecting a moving speed of the slide; and a section for executing a force control on the servo-motor. The force controlling section executes force controls in mutually different modes on the servo-motor, through mutually different control loops, one mode being provided for an initial stage defined from an instant when the die cushion mechanism starts producing the force to be applied to the slide until a predetermined subsequent instant, and another mode being provided for a succeeding stage defined after the predetermined subsequent instant, by using at least a slide-speed detected value detected by the slide-speed detecting section. The force controlling section includes a section for preparing a first speed-command value to be commanded to the servo-motor in the initial stage and a second speed-command value, different from the first speed-command value, to be commanded to the servo-motor in the succeeding stage.
Abstract:
Provided is a die cushion controller (40) that controls an ascending/descending speed of a die cushion pad (15) based on a preset pressure pattern (56) and positional pattern (54), in which a position/pressure control switching unit (51) constantly monitors and compares a for-pressure speed command signal υpc corresponding to a pressure deviation signal ep and a for-position speed command signal υhc corresponding to a position deviation signal eh, and selects smaller one of those speed command signals to be sent to a speed control unit (53). Since the for-pressure speed command signal υpc and the for-position speed command signal υhc are constantly monitored and either one of them is selected, change in pressure and change in position can be accurately recognized to allow switching between a pressure control and a position control quickly, stably, and reliably.
Abstract:
A striker plate for a sheet-metal forming tool designed to be arranged between a gas-filled spring having a striking surface on a piston rod stop and a surface situated on the sheet-metal forming tool and thereby to receive force from the gas-filled spring in sheet metal forming. The striker plate includes a spring part arranged between a striker part and a bottom part, and is designed to be arranged at one of the surfaces.
Abstract:
A control device for a die cushion mechanism, for carrying out force control with high accuracy and at a high speed. The control device for controlling the force generated by the die cushion mechanism utilizes a press working cycle which is repeatedly carried out. A correcting part of the control device corrects each deviation in one working cycle based on a time-series of deviation data in the just before press working cycle. By repeating this operation, the deviation between the detected value and the commanded value may be converged toward zero. Therefore, the deviation may become smaller than that of the conventional feedback control, whereby it is possible to respond to a change in the commanded value in a short time.
Abstract:
A reaction device for forming equipment includes a base, a reaction member movably spaced therefrom by guides, and a return gas spring carried by the base and operatively engaged to the reaction member for yieldably biasing the reaction member away from the base. The base has a return gas spring passage and guide shaft passages spaced apart therefrom. A return gas spring is received in the return gas spring passage of the base, and has a piston rod with an end arranged for contact with the reaction member. The guides include guide shafts arranged for engagement with the reaction member and disposed in guide bushings, which are received in the guide shaft passages of the base and preferably project below the base for use in locating the reaction device on the forming equipment.
Abstract:
In a die cushion apparatus, a pressurizing force acting on a die cushion pad is applied to a first piston of a hydraulic cylinder unit by the operation of a slide, the first piston slides inside a first cylinder and pressure oil in a first hydraulic chamber is pressurized. The first hydraulic chamber is linked to a second hydraulic chamber of a booster cylinder unit via a second check valve, so that the pressure oil of the first hydraulic chamber is pushed out into the second hydraulic chamber. When the pressure of the first hydraulic chamber is applied to a second piston, the second piston slides inside the second cylinder and gas of a gas pressure chamber is compressed, whereby a surge pressure is reduced.
Abstract:
A reaction device for forming equipment includes a housing having a mount adapted to be connected to a forming die and a casing carried by the mount. A lift rod is disposed at least partially on the housing for movement relative to the house between extended and retracted positions. The lift rod has a first end disposed in the housing, a second end and a passage extending through the lift rod between its ends. An adapter is connected to the lift rod within the passage and is adapted to be coupled to a lift bar of the forming equipment. A biasing member is disposed between the lift rod and the housing to yieldably bias the lift rod to its extended position.
Abstract:
A controller for a die cushion mechanism includes: a spring element that is displaced according to force between the die cushion mechanism and a slide; a force instructor that instructs force; a force detector that detects force; and a speed instruction generator that generates a speed instruction of the servo motor, based on a force instruction value instructed by the force instructor and a force detection value detected by the force detector. The speed instruction generator generates the speed instruction by multiplying a force gain by a force difference determined from a difference between the force instruction value and the force detection value. The speed instruction generator changes the force gain, based on a spring constant corresponding value of the spring element determined from a force indicator that works between the slide and the die cushion. With this arrangement, the die cushion mechanism can be controlled with high precision, even when a mechanical characteristic changes. A force indicator is a force instruction value or a force detection value. In place of the force indicator, a spring constant corresponding value can be determined according to displacement of the spring element or a position of the die cushion mechanism.