Abstract:
A solid fuel burner to be inserted into a burner throat bored in a wall portion of a furnace, comprising: a solid fuel nozzle for ejecting mixed fluid of solid fuel and primary air; a secondary air nozzle for ejecting secondary air; a tertiary air nozzle for ejecting tertiary air; a secondary air guide member for guiding a flow of the secondary air outwardly in a radial direction; and one or more tertiary air guide members for guiding a flow of the tertiary air outwardly in the radial direction at a first angle with respect to a central axis (C) of the solid fuel burner, wherein a distal end position (X2) of each of the tertiary air guide members in an axial direction of the solid fuel burner is at a closer side of the furnace than a distal end position (X1) of the secondary air guide member.
Abstract:
Provided are a burner such as a concentrate burner, a calcine burner, or a matte burner, or a burner using a mixture of these for feeding reaction gas and fine solids into a reaction shaft of a suspension smelting furnace, and a fine solids feeding apparatus for a burner such as a concentrate burner, a calcine burner, or a matte burner, or a burner using a mixture of these. The fine solids feeding apparatus comprises gas outlets in a fine solids discharge channel upstream of a downstream outlet end of the fine solids discharge channel. The gas outlets comprise spiral path guiding members configured to facilitate gas to flow from the gas outlets in a spiral flow path around a center axis A of the fine solids discharge channel.
Abstract:
The present application provides a tangentially fired boiler. The tangentially fired boiler may include a combustion chamber and an overfire air system positioned about the combustion chamber. The overfire air system may include a number of overfire air windboxes positioned in a horizontal orientation.
Abstract:
A burner comprises a nozzle main body (7) which is installed along a central axis of a throat (4) provided on a furnace wall (3) and comprises an inner nozzle (11) in which an auxiliary combustion air (24) flows and an outer nozzle (9) which is provided on an outer side and concentrically with the inner nozzle and in which a pulverized coal mixed flow (18) obtained by mixing a carrying medium with a pulverized coal flow, a wind box (5) for accommodating the nozzle main body, a secondary air regulator (8) accommodated in the wind box and provided at a tip portion of the nozzle main body, an auxiliary combustion air intake pipe (23) for introducing a combustion air as an auxiliary combustion air (22) into the inner nozzle from the wind box, a pulverized coal flow supply pipe (16) for introducing a pulverized coal mixed flow into the outer nozzle, and an oxygen-containing gas supply pipe (17) for supplying an oxygen-containing gas (19) to the pulverized coal mixed flow and raising the oxygen concentration in the pulverized coal mixed flow.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
The igniter lance include a lance fuel duct for pulverised fuel and an electric igniter for ignition of the pulverized fuel passing through the lance fuel duct.
Abstract:
A pulverized coal burner and a pulverized coal boiler. The coal burner comprises a primary air cylinder (111) and a pulverized coal concentration device (112). The coal concentration device (112) makes the concentration of the coal flow gradually decrease from inside to outside along the radial direction, with respect to an axis (100) of the primary air cylinder (111). The coal burner further comprises a coal separating cylinder (113) and a coal guiding cylinder (114) located downstream of the device (112), the rear end of the cylinder (113) is connected with the front end of the coal guiding cylinder (114). The outlet of the cylinder (114) has a conical expansion portion (1141). The coal burner further comprises a divergent nozzle (115) connected with the rear end of the primary air cylinder (111) and whose cross-sectional area gradually increases along the flow direction of the coal flow.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A solid fuel nozzle tip for issuing a flow of mixed solid fuel and air into a boiler or furnace includes an outer nozzle body having an outer flow channel extending therethrough from an inlet to an outlet of the outer nozzle body. An inner nozzle body has an inner flow channel extending therethrough from an inlet to an outlet of the inner nozzle body. The inner nozzle body is mounted within the outer nozzle body with the inner flow channel inboard of and substantially aligned with the outer flow channel. The inner and outer nozzle bodies are joined together so as to accommodate movement relative to one another due to thermal expansion and contraction of the outer and inner nozzle bodies.
Abstract:
A burner includes a burner front having annular and central openings. The annular opening, for discharging a solid fuel, fluidly connects to a central passage way. The central opening, for discharging an oxygen containing gas, fluidly connects to an annular passage way for passage of oxygen positioned co-axial with the central passage way. The central passage way has a downstream part and a diameter that increases over a first length and subsequently decreases over a second length terminating at the burner front. Inside the downstream part a hollow member is positioned which is closed at one end and has an opening at or near the burner front, and has increasing and decreasing diameters aligned with the increasing and decreasing diameters of the central passage way forming an annular passage. The hollow member fluidly connects with the annular passage way for the oxygen containing gas via one or more connecting conduits.