Abstract:
Methods of attenuating, delaying the phase, and otherwise controlling an optical signal propagating along a waveguide are provided. According to one method, a variable optical attenuator structure is provided comprising a waveguide core, a cladding, an electrooptic polymer, and a set of control electrodes. The core, the cladding, and the electrooptic polymer are configured such that an increase in the index of refraction of the polymer causes a substantial portion of an optical signal propagating along the waveguide core to couple into a relatively high index region of the electrooptic polymer above the waveguide core, so as to inhibit return of the coupled signal to the waveguide core. Another embodiment of the present invention introduces a phase delay in the coupled optical signal and permits return of the coupled signal to the waveguide core. An additional embodiment contemplates the use of a ridge waveguide structure to enable control of the optical signal. Additional embodiments are disclosed and claimed.
Abstract:
A PIN electro-optical traveling wave modulator (10) including diffraction gratings (34, 36) positioned at opposing sides of an optical waveguide (20) that act to change the propagation pattern of the waveguide (20). The modulator (10) includes an N-type layer (14), a P-type layer (18) and an intrinsic layer (16) acting as the waveguide (20). A metal electrode (26) is in electrical contact with the N-type layer (14), and a metal electrode (30) is in electrical contact with the P-type layer (18). The electrodes (26, 30) define an RF transmission line. An optical wave (22) propagates along the waveguide (20) and interacts with the gratings (34, 36) which slow the optical wave (22) to match its speed to the speed of the RF wave in the transmission line. In one embodiment, the gratings (34, 36) are 2-D gratings formed by vertical holes (38) in the waveguide (20).
Abstract:
An electro-optic modulator structure for particular use in narrowband optical subcarrier systems. A traveling wave is established across the active region of the device, instead of a standing wave. This is accomplished through the use of a directional resonator structure that prevents reverse-traveling waves from being established within the resonator. Hence, the electric field is applied to the traveling optical wave in a similar fashion to a traveling-wave modulator, except that the traveling wave has a much greater amplitude due to the build-up of energy inside the resonator. Since the modulator is operated in a traveling-wave fashion, it can be tuned to operate at any frequency using tuning elements, regardless of the length of the active region. Furthermore, the microwave and optical signals can be velocity-matched to mitigate optical transit time effects that are normally associated with a resonant modulator utilizing a standing-wave electrode structure.
Abstract:
A low voltage modulation signal can be realized while reducing reflection and radiation of a high frequency modulation signal in an optical modulator. The optical modulator includes an electrooptic effect element, a relay substrate constituted of a dielectric wafer on which a coplanar waveguide, and a connector supplying a modulation signal of microwave band to the electrooptic effect element, wherein, when the modulation signal includes a component of 30 GHz, a pad space between the signal electrode pad and the ground electrode pad of the electrooptic effect element is defined as S &mgr;m, and a pad height is defined as H &mgr;m, the pad height is no greater than 300 &mgr;m and the relation is set as −0.002H2+1.3H−160
Abstract:
The present invention discloses high-speed, single-drive and dual-drive external optical modulation devices that reduce the voltage and power required to amplify and modulate electrical signals onto an optical carrier. Two primary components of an optical transmitter, namely, the modulator and driver, are integrated, and preferably hybridly integrated, in a single package, thereby eliminating many of the cable connector interfaces that add loss, complexity and cost to the system. Further, integration frees the devices from the standardized impedance (i.e. 50 ohm) constraints that reduce performance, thereby enabling the design of optimized, low voltage, hybridly integrated modulation devices.
Abstract:
The invention discloses phase-shifters, modulators, and method that produces a smaller &pgr; by means of a field excitation using multiple electrodes. A negative signal is introduced that travels with the positive signal, which enhances the electric field significantly. The field enhancement is provided by the superposition of the fields accumulated from each electrode. A base or substrate material can be made from any compound having linear so electro-optic properties, such as lithium niobate, lithium tantalite, potassium lithium niobate, potassium titanyl phosphate or gallium-arsenide. For lithium niobate, there are two possible orientations of electric field, z-cut orientation or x-cut orientation.
Abstract:
A traveling wave optical modulator includes an optical waveguide substrate made of an electro-optic and ferrodielectric single crystal in the form of an X- or Y-orientation plate_and comprising a thicker portion having a larger thickness and a thinner portion having a smaller thickness; first and second branched optical waveguide portions formed at least on the thinner portion of the optical waveguide substrate; a set of electrodes provided on at least the thinner portion of the substrate and adapted for applying voltage to the first and second optical waveguide portions to modulate a light propagating the optical waveguide portions; and a buffer layer provided to cover a part of the optical waveguide portions at the thinner portion of the substrate, the electrodes crossing on the buffer layer.
Abstract:
A wideband semiconductor electro-absorption optical modulator including a semiconductor core shorter in absorption-peak wavelength than a wavelength of optical signal, and an electrode for applying an electric signal to absorb the optical signal by shifting the absorption-peak wavelength to a long wavelength region when a voltage is applied, wherein an electric signal input port and an electric signal output port are disposed so that the electrode is constructed in the form of a traveling-wave electrode, and a total thickness of non-doped layers including the semiconductor core is reduced to decrease a driving voltage. Degradation of optical modulation bandwidth and reflection characteristics of the electric signal caused by mismatching of characteristic impedance to an outer circuit are reduced by decreasing an interaction length of the electric signal and the optical signal. Further, mismatching of characteristic impedance is corrected by adjusting a doping concentration of a p-type or n-type doped layer located above or beneath the semiconductor core.
Abstract:
Velocity-matched electrodes that are sufficiently index-matched to use in linearized directional-coupler modulators are provided by placing a low dielectric constant material layer over the travelling-wave modulator electrodes, followed by a metal layer that is electrically connected to a ground electrode. The low dielectric constant layer between the grounded metal layer and the active electrode lowers the effective RF dielectric constant, which lowers the RF index of refraction. The RF index of refraction is matched to the optical index of refraction by controlling the thickness of the low dielectric constant layer, which is deposited with standard RF sputtering techniques that allow for precise control over the layer thickness. As a result, more precise velocity matching and greater reproducibility than with prior velocity matching techniques is achieved.
Abstract:
An optical modulation device includes a substrate, and a dielectric member having first and second surfaces opposite to each other. An optical waveguide extends on the first surface of the dielectric member and exhibits an electro-optical effect. First and second parallel lines are electromagnetically coupled with each other, and are of a microstrip line structure. The first line has a first line member and a ground plane, and the second line has a second line member and the ground plane. The first line member and the second line member extend on the first surface of the dielectric member and extend at opposite sides of the optical waveguide respectively. The ground plane extends between the substrate and the second surface of the dielectric member.