Abstract:
Closed-loop circulation for providing liquid metal to an interaction region at which an electron beam is to impact upon the liquid metal to produce X-rays is presented. In a method according to the invention, the pressure of the liquid metal is raised to at least 10 bar using a high-pressure pump. The pressurized liquid metal is then conducted to a nozzle and ejected into a vacuum chamber in the form of a spatially continuous jet. After passage through the vacuum chamber, the liquid metal is collected in a collection reservoir, and the pressure of the liquid metal is raised to an inlet pressure, e.g. using a primer pump, suitable for the inlet of the high-pressure pump. The invention also relates to a corresponding circulation system and an X-ray source provided with such circulation system.
Abstract:
The invention relates to an anode module 1 for a liquid-metal anode X-ray source which has an electron entry window 3 in the region of focus 2. It is provided according to the invention that an X-ray beam exit window 4 lies opposite the electron entry window 3 of the anode module 1 and the exit angle Θ of the X-ray beams 7 between an electron beam 6 entering through the electron entry window 3 along the direction of incidence 5 and the X-ray beams 7 exiting through the X-ray beam exit window 4 is between 5° and 50°, in particular 15°.The invention also relates to an X-radiator with an electron source for the emission of electrons and a liquid-metal anode emitting X-ray beams 7 when the electrons strike, which has an anode module 1 with the above-named features.
Abstract:
An x-ray tube has an anode plate connected to an anode tube that is mounted such that it can rotate around a rigid anode shaft. To improve the heat dissipation from the anode plate, a liquid for dissipation of heat to the anode shaft is accommodated in an intervening space formed between the anode shaft and the anode plate.
Abstract:
An x-ray tube for emitting x-rays includes a housing, an anode assembly disposed in the housing and including a target surface, a cathode assembly mounted in the housing at a distance from the anode assembly, and a target body extending from the target surface of the anode assembly. The cathode assembly includes an electron emitter which emits electrons. The electrons hit the target surface of the anode assembly and produce x-rays. The target body has a cavity containing a working fluid and is configured to transfer thermal energy away from the target surface.
Abstract:
An X-ray tube rotating anode is cooled with a liquid metal functioning as a recirculated heat exchange fluid and/or a metal film in a gap between the anode and a stationary structure. The liquid metal is confined to the gap by (a) a labyrinth having a coating that is not wetted by the liquid, (b) a magnetic structure, or (c) a wick. The liquid metal recirculated through the anode is cooled in a heat exchanger located either outside the tube or in the tube so it is surrounded by the anode. The heat exchanger in the tube includes a mass of metal in thermal contact with the recirculating liquid metal and including numerous passages for a cooling fluid, e.g. water. A high thermal conductivity path is provided between an anode region bombarded by electrons and a central region of the tube where heat is extracted. In one embodiment the high thermal conductivity is achieved by stacked pyrolytic structures having crystalline axes arranged so there is high heat conductivity radially of the region and lower thermal heat conductivity normal to the high heat conductivity direction.