Abstract:
Novel sorbent systems for the desulfurization of cracked-gasoline are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promoters are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
Abstract:
A method of processing spent ion-exchange resins contaminated with suspended particles, inorganic residues and/or organic foreign matter so as to render the resin ineffective for continued use, by which method this waste material can be processed to produce useful activated carbon particles instead of simply being dumped in a landfill. In accordance with the invention, granular spent organic ion-exchange resin having an ash content of from 5 to 30% is first dried, then carbonized under a substantially inert atmosphere at a temperature of 300 to 900° C., the inert atmosphere containing 0.2 to 4 volume percent oxygen up to 400° C., and finally activated at a temperature of at least 700° C. under a substantially inert atmosphere containing 3 to 50 volume percent steam.