Abstract:
An emulative particle contamination standard is fabricated using photolithography and semiconductor processes to produce raised features, such as in a thick photoresist layer, to create stable and resilient raised structures that mimic realistic contamination, so as to enable the reproducible production of the emulative particle contamination standards that comprise the raised features of various sizes, shapes, and distribution across a highly reflective surface of an underlying substrate.
Abstract:
In a calibration method for a surface texture measuring instrument which measures a surface of a workpiece and includes an arm that is supported to be swingable around a base point thereof and is provided with a contact point at an end for scanning the workpiece surface, the calibration method includes a measurement step for measuring a calibration gauge of which cross section contains a part of a substantially perfect circle, an assignment step for assigning the detection results, which are obtained in the measurement step, in an evaluation formula based on a circle equation in which the center coordinates of the calibration gauge are (xc, zc) and the radius is nullrnull, and a calibration step for calibrating each parameter based on the evaluation formula obtained in the assignment step.
Abstract:
A ceramic reference in conjunction with a spectrometer, a metallized ceramic material, and a method of utilizing a ceramic material as a reference in the ultraviolet, visible, near-infrared, or infrared spectral regions are presented. The preferred embodiments utilize a ceramic reference material to diffusely reflect incident source light toward a detector element for quantification in a reproducible fashion. Alternative embodiments metallize either the incident surface or back surface of to form a surface diffuse reflectance standard. Optional wavelength reference layers or protective layers may be added to the ceramic or to the metallized layer. The reference ceramic is used to provide a measure of optical signal of an analyzer as a function of the analyzers spatial, temporal, and environmental state.
Abstract:
A calibration method for calibrating a parts-handling device with respect to a computer vision camera includes the steps of moving a parts-handling device into contact with a touch-off block, and storing a value indicative of the position of the parts-handling device when it is in contact with the touch-off block. In addition, there may be two orthogonal surface on the touch-off block. By touching the parts-handling device against both surfaces, the parts-handling device can be calibrated for position offset in two orthogonal directions. For parts-handling devices that are rotatable, the parts-handling device may be rotated to a succession of predetermined angular positions and brought into contact with the touch-off block in each position. By combining the measured positions of the parts-handling device in each rotational position, the system can be calibrated to compensate for the offset from the camera to the parts-handling device as a function of rotational position as well.
Abstract:
A calibration standard which may be used to calibrate lateral dimensional measurement systems is provided. The calibration standard may include a first substrate spaced from a second substrate. In addition, the calibration standard may include at least one layer disposed between the first and second substrates. The layer may have a traceably measured thickness. For example, a thickness of the layer may be traceably measured using any measurement technique in which a measurement system may be calibrated with a standard reference material traceable to a national testing authority. The calibration standard may be cross-sectioned in a direction substantially perpendicular to an upper surface of the first substrate. The cross-sectioned portion of the calibration standard may form a viewing surface of the calibration standard. In this manner, a lateral dimensional artifact of the calibration standard may include the traceably measured thickness of at least the one layer.
Abstract:
The present invention provides an artificial member (80, 210) which mimics the absorbance spectrum of a body part and includes the spectral components of blood analytes. The artificial member comprises a light scattering and reflecting material, and has a chamber portion comprising one or more chambers (90, 100, 220). The artificial member is configured to be reproducibly received in a measuring receptor which receptor is operatively connected to a non-invasive monitoring device.