Abstract:
There is provided an LED light source whose chromaticity can be adjusted easily without changing its outer shape and suffering damage in the process of chromaticity adjustment. An LED light source includes an LED device, a fluorescent material that absorbs and wavelength-converts a portion of light emitted from the LED device to emit light from itself, a sealing material that includes the fluorescent material and that is disposed around the LED device, and light scattering sections that are formed at a portion of a surface of the sealing material and scatter a portion of the light emitted from the LED device for adjusting chromaticity of the LED light source, and a chromaticity adjustment method for such LED light source.
Abstract:
An organic light emitting display panel is disclosed. In one embodiment, the panel includes a pad portion includes: a protection film disposed on an encapsulation layer for encapsulating a pixel portion and extending to the pad portion, wherein the protection film has conductivity in an area corresponding to the pad portion.
Abstract:
An organic light emitting diode (OLED) display with improved display unit sealing performance is provided. The OLED display includes a substrate, a display unit formed over the substrate and including a plurality of pixels, a conductive contact layer disposed at a distance from the display unit around the display unit, and a sealing member facing the display unit and being fixed to the substrate by the conductive contact layer. The sealing member includes a plurality of metal layers laminated with an insulating adhesive layer formed therebetween, and the plurality of metal layers is electrically connected to the display unit through the conductive contact layer.
Abstract:
A light emitting apparatus includes: a laser element which emits laser light; a light emitting section which generates fluorescence in response to the laser light emitted from the laser element; a parabolic mirror which reflects the fluorescence generated by the light emitting section; and a multilayer filter which transmits the laser light and reflects the fluorescence, the laser element being provided outside the parabolic mirror, the parabolic mirror being provided with a window part through which the laser light passes, and the multilayer filter being provided so as to cover the window part.
Abstract:
A segmented electroluminescent device (100) with resistive interconnect layers (102), each segment (104,104′, 104″) comprising an electroluminescent layer (110) arranged in between a first (106) and a second electrode (108) layer. The segments (104, 104′, 104″) are connected via resistive interconnect layers (102), the resistive interconnect layers having a larger square resistance than the second electrode layer. The resistive interconnect layers (102) add a ballast resistance to the electroluminescent device such that no additional electric ballast is needed. As the electric ballast is divided over multiple layers the problem of a heat management for the electric ballast becomes less important. By adding an isolation layer (122) the surface of the resistive interconnect layers (102) can be increased to almost the whole surface of the electroluminescent device (100). The system of the electrode layer (108), the isolating layer (122) and the resistive layer (102) functions as a capacitor.
Abstract:
A barrier film composite includes a decoupling layer and a barrier layer. The barrier layer includes a first region and a second region that is thinner than the first region.
Abstract:
A display device includes: a light emitting layer configured to emit light in accordance with current; a first pixel separation film configured to define a first opening for providing a light emitting region when the light emitting layer emits light; and a second pixel separation film laminated on the first pixel separation film and configured to define a second opening that is restricted so as not to gradually become wider as apart from a surface contacted with the first pixel separation film.
Abstract:
To suppress discharge around an anode electrode. Provided is a light-emitting substrate, including a light-emitting member for emitting light by irradiation with an electron, a first electroconductive film stacked on the light-emitting member, a second electroconductive film which is distant from an outer periphery of the first electroconductive film and surrounds the outer periphery of the first electroconductive film, and a dielectric film for covering an end portion of the second electroconductive film which is opposed to the outer periphery of the first electroconductive film.
Abstract:
An emissive display device, including: a reflective electrode and a transparent electrode. One or more light-emitting layers are formed between the reflective and transparent electrodes. A scattering layer is positioned in the emissive display device to scatter light trapped in the one or more light-emitting layers; and a circular polarizer is located on the side of the scattering layer opposite the reflective electrode.
Abstract:
To provide a material for an electroluminescence element of which a buffer layer can be formed without using water as a solvent unlike a conventional polymer material used in a buffer layer, and an electroluminescence element using the same. According to the present invention, in an electroluminescence (EL) element including a first electrode (101), a buffer layer (102), an electroluminescence (EL) film (103), and a second electrode (104) (as shown in FIG. 1A), a conductive material is used as the buffer layer (102) formed on the first electrode (101). The conductive material includes: a polymer compound (so-called conjugate polymer) soluble in an organic solvent, which has a conjugate on a main or side chain thereof; and a compound soluble in an organic solvent, which has acceptor or donor properties for the polymer compound.