Abstract:
Methods and system for managing, during an external event, a wireless communication device configured to search for an available wireless communication system from among a plurality of wireless communication systems in accordance with a first priority order. Upon detecting that an external event has occurred, a communication network may determine, based in part on the external event, a period of time that is associated with the external event, and cause the wireless communication device to search, for the determined period of time, for an available wireless communication system from among the plurality of wireless communication systems in accordance with a second priority order instead of the first priority order. Upon expiration of the determined period of time, the communication network may cause the wireless communication device to search for the available wireless communication system in accordance with the first priority order instead of the second priority order.
Abstract:
Disclosed herein is a method and system for parsing a coverage area identifier. An example method is operable in a wireless communication system having a base station and a wireless communication device (WCD), the base station radiating to define multiple coverage areas in which the WCD can operate. The method involves: the WCD operating within one of the multiple coverage areas; the WCD receiving from the base station a coverage area identifier of the coverage area in which the WCD operated; the WCD determining a group to which the base station belongs; the WCD using the determined group as a basis to select a parsing technique from multiple parsing techniques; and the WCD using the selected parsing technique to parse the received coverage area identifier so as to extract from the received coverage area identifier one or more attributes of the coverage area in which the WCD operated.
Abstract:
A method and corresponding system for use of a femtocell in a vehicle (an “in-vehicle femtocell”) to help limit operation of a wireless communication device (WCD) positioned in the vehicle. In one implementation, registration (or registration attempts) of one or more WCDs with an in-vehicle femtocell may be used as a basis to trigger limitations on certain WCD functions in a vehicle, such as to prevent a WCD from providing text-messaging service for instance. In another implementation, a WCD may receive a signal from an in-vehicle femtocell and in response to the signal, the WCD may register with the femtocell to be served with wireless communication service by the femtocell. In addition to registering with the femtocell, the WCD may limit certain of its own functions while it is in the vehicle and being served with wireless communication service by the femtocell.
Abstract:
Disclosed herein are methods and systems to help provide a location of a mobile station in cases in which the location of the serving base station may not be known or may not be available from a base station almanac. According to the disclosed methods and systems, if the serving base station is not listed in the almanac, a positioning system will direct the mobile station to obtain identification information from a second base station (e.g., the “second best” available base station) by acquiring or partially acquiring a connection to the second base station. The positioning system may then query the almanac for location information of the second base station, based on the identification information obtained from that base station.
Abstract:
A method and corresponding system to help manage allocation of subframes for relay communication. The allocation may alternate or rotate between which subframes per cycle are used for backhaul communication and which subframes per cycle are used for access communication. By changing the allocation of one or more subframes per cycle between backhaul and access, it becomes possible to only tentatively take away certain subframes of access communication, while reverting to use those subframes for access communication perhaps as soon as the next cycle.
Abstract:
Embodiments described herein may help to provide a delayed zone-update process. An exemplary method may involve a user entity, which is initially operating in a first of a plurality of multi-coverage-area zones in a radio access network (RAN), subsequently determining that the user entity has moved into a second multi-coverage-area zone of the RAN, wherein the user entity is located in a first coverage area of the second multi-coverage-area zone. In response, the user entity may refrain from sending a registration message to register in the second multi-coverage-area zone until the earlier of: (i) a threshold period of time elapsing and (ii) the user entity moving into another coverage area in the second multi-coverage-area zone that is different from the first coverage area.
Abstract:
A service profile for a mobile station identifies at least a first set of services that apply when the mobile station is in communication with a first radio access network and a second set of services that apply when the mobile station is in communication with a second radio access network. A service platform, such as an application server, receives a signaling message, e.g., a Session Initiation Protocol (SIP) INVITE message, and the service platform identifies which radio access network is serving the mobile station based on information contained in the signaling message. The service platform then controls the provision of services to the mobile station based on the identified radio access network, in accordance with the service profile.
Abstract:
Disclosed herein are methods and systems that may take advantage of unused space in general page messages (GPMs) by including multiple instances of a given page in the same GPM, in an effort to improve the chances that the intended mobile station receives the page. An exemplary paging method involves: (a) before a transmission of a general page message (GPM) that is formatted to include up to a maximum number of page records, making a determination that less than the maximum number of page records are scheduled to be included in the GPM; (b) in response to the determination, selecting, from the page records that are scheduled to be included in the GPM, at least one page record for which to include two or more instances in the GPM; and (c) transmitting the GPM, wherein two or more instances of the at least one selected page record are included in the transmission of the GPM.
Abstract:
An originating mobile station seeks to establish a push-to-talk (PTT) communication session with a destination mobile station. To do this, the originating mobile station transmits a first request message that requests the PTT session. Before receiving a predefined indication that the requested PTT session has been accepted, the originating mobile station transmits a first continuation message that includes first session description information to facilitate establishment of the PTT session. A PTT server receives the first request message and, before receiving the first continuation message, transmits to the destination mobile station a second request message that requests the PTT session. The PTT server then transmits a second continuation message that includes second session description information. The destination mobile station receives the second request message and, before receiving the second continuation message, transmits an acceptance message indicating acceptance of the requested PTT session.
Abstract:
A system and method are provided for using differentiated telephone numbers to determine whether to perform a vocoder bypass. In an exemplary embodiment, a mobile station may call a terminating node. An intermediate entity may search an identifier of the terminating node for a predetermined aspect. If the predetermined aspect is found, the terminating node may be a mobile station, and the intermediate entity may perform a vocoder bypass. If the predetermined aspect is not found, the terminating node may be a non-mobile station, and the intermediate entity may perform vocoding.