Abstract:
A dielectric layer overlies a semiconductor substrate. The substrate has components and appropriate contacts formed therein. The dielectric layer electrically insulates the substrate and components from overlying conductive interconnect layers. A barrier layer is arranged over the dielectric layer to isolate the interconnect layers from other structures. A copper layer is then deposited over the barrier layer and thick interconnect lines having a first width and a first height are realized. Then, the barrier layer is etched using one of many alternative techniques. The barrier layer has a second width and a second height wherein the second width of the barrier liner is selected to be greater than the first width of the thick copper interconnect.
Abstract:
Methods and apparatus for implementing a robust unicast/broadcast/multicast protocol are provided. In one aspect, a method of avoiding collision of intra-basic service set unicast, broadcast or multicast transmissions notifies stations in the basic service set of a reserved transmit opportunity for a unicast, broadcast or multicast transmission. Transmissions from at least one station in the basic service set are deferred until after the reserved unicast, broadcast or multicast transmit opportunity.
Abstract:
A bi-directional protection circuit employs a single comparator for detecting fault conditions. Diodes are coupled between a detection node and voltage dividers setting references for inverting and non-inverting comparator inputs, each diode forward biased during one of the positive and negative halves of the alternating current input signal cycle and coupling the detection node to a respective one of the inverting and non-inverting comparator inputs, and reverse biased during the other of the positive and negative halves and decoupling the detection node from the other of the inverting and non-inverting comparator inputs. Upon an overcurrent condition during the positive half, a voltage at the inverting comparator input is drawn above the reference voltage at the non-inverting input. Upon an overcurrent condition during the negative half, a voltage at the non-inverting comparator input is drawn below the reference voltage at the inverting input.
Abstract:
Psychoacoustic bass audio signal enhancement can be accomplished using a monotonic, asymmetric polynomial distortion. A non-linear process applies a monotonic, asymmetric polynomial distortion function that has continuous first and second derivatives to generate even and odd harmonics of missing fundamental frequencies. This polynomial distortion produces the desired psychoacoustic effect with a fairly rapid roll-off so as to avoid unpleasant aliasing. Moreover, the lack of first-order discontinuities prevents clicks or glitches.
Abstract:
An H-bridge driver for a disk drive system includes first and second high side switched legs and first and second low side switched legs. An inductor head for writing data to and reading data from a magnetic media is connected to form a center of the H-bridge. The system includes a voltage regulator circuit that generates a common mode regulated voltage. First and second high side logic circuits, which selectively control operation of the first and second high side switched legs, are coupled between a high reference voltage and the common mode regulated voltage. First and second low side logic circuits, which control the first and second low side switched legs, are coupled between the common mode regulated voltage and ground.
Abstract:
A thick metal layer is formed on a semiconductor integrated circuit in multiple different deposition chambers. A first portion of the metal layer is formed in a first deposition chamber, the first thickness being approximately half the target thickness. The substrate is then removed from the first chamber and transported to a second chamber. The deposition of the same metal layer continues in a second chamber, having the same grain structure and orientation. The second portion of the metal layer is grown to achieve the final thickness. By using two different deposition chambers to form the single metal layer, layers in excess of 25,000 angstroms in thickness can be obtained.
Abstract:
A key switch matrix circuit includes key switches arranged in rows and columns, each row having a scan line, each column having a sense line. Each key switch is operable to couple a scan line to a sense line. A scan signal delivery circuit supplies scan signals to the scan lines, the scan signals delivering a scan pulse to each row of the key switch matrix circuit in turn. A key switch detection circuit outputs a first signal if a key switch is operated and a scan pulse detection circuit outputs a second signal if a scan pulse is coupled to a sense line. The scan signal delivery circuit begins supplying scan signals in response to the first signal and stops supplying scan signals in response to the second signal. In one embodiment, a processor reads the sense lines in response to the second signal.
Abstract:
An integrated circuit burn-in test system includes an integrated circuit and a tester. The integrated circuit includes operating circuitry, a heater for heating the operating circuitry, and burn-in test circuitry for testing the operating circuitry while being heated. A package surrounds the operating circuitry, the heater and the burn-in test circuitry. The burn-in test circuitry causes the operating circuitry to operate and generate data related thereto. The tester receives data from the burn-in test circuitry. The heater may be configured within the package to heat at least one predetermined portion of the operating circuitry.
Abstract:
A microfabricated structure that includes a first layer of material on a substrate, and a second layer of material over the first layer that forms an encapsulated cavity, and a structural support layer added to the second layer. Openings can be formed in the cavity, and the cavities can be layered side by side, vertically stacked with interconnections via the openings, and a combination of both can be used to construct stacked arrays with interconnections throughout.
Abstract:
A method includes receiving an activation signal at a semiconductor device and generating an output power signal at the semiconductor device in response to receiving the activation signal. The output power signal has a duty cycle. The method also includes providing the output power signal to a load. The output power signal provides power to the load. An amount of power provided to the load is based on the duty cycle of the output power signal. In addition, the method includes adjusting the duty cycle of the output power signal using at least one of a current limiter and a power limiter integrated in the semiconductor device.