Abstract:
According to one embodiment, an organic electroluminescent device includes a first electrode, a plurality of second electrodes and an organic light-emitting layer. The first electrode includes a first major surface and is optical transparency. The second electrodes extend in a first direction parallel to the first major surface and are separated from each other in a second direction parallel to the first major surface and perpendicular to the first direction. An optical transmittance of the second electrodes is lower than an optical transmittance of the first electrode. A distance along the second direction between a line extending in the first direction and a side surface of each of the second electrodes continuously increases and decreases along the first direction. The side surface is unparallel to the first major surface. The organic light-emitting layer is provided between the first electrode and the second electrodes.
Abstract:
According to one embodiment, an organic EL display includes a substrate and a pixel. The pixel is disposed on the substrate and includes a first color displaying portion and a second color displaying portion. The first color displaying portion has a first organic light emitting layer. The second color displaying portion has a second organic light emitting layer having an emission spectrum different from an emission spectrum of the first organic light emitting layer. The first color displaying portion has two sub-pixels. One of the two sub-pixels has a color filter.
Abstract:
According to one embodiment, an organic electroluminescent element includes: a first electrode having a first and a second major surfaces; a second electrode opposed to part of the first major surface; an organic luminescent layer provided between the first and the second electrodes; an optical layer having a third major surface opposed to the second major surface and a fourth major surface on opposite side from the third major surface. The fourth major surface includes a first region overlapping the second electrode, and a second region not overlapping the second electrode. The fourth major surface includes a first concave-convex provided in the first region and a second concave-convex provided in the second region. A planarization layer is provided on the second region and burying the second concave-convex.
Abstract:
Provided is a voice communication device for carrying out voice communication among a plurality of locations, including: a sound source direction identification block for identifying a direction of a sound source; a voice sender block for sending the collected voice to a different location; a voice receiver block for receiving a voice from a different location; a player block for playing the received voice; a playing information setting block for setting playing information for the voice being played; a speaker volume storage block for acquiring the direction of the sound source for which the playing information is set from the sound source direction identification block and storing the direction of the sound source in association with the playing information; and a voice manipulating block for acquiring the playing information corresponding to the direction of the sound source of the voice and manipulating the voice based on the playing information.
Abstract:
According to one embodiment, an illumination device includes an anode, a metal layer, a cathode, an organic electroluminescent unit, first and second insulating layers, and a plurality of conductive piercing layers. The metal layer has an electrical resistance lower than that of the anode. The cathode is provided between the anode and the metal layer. The organic electroluminescent unit is provided between the anode and the cathode. The first insulating layer is provided between the cathode and the metal layer. The conductive piercing layers pierce the organic electroluminescent unit, the cathode, and the first insulating layer along a direction from the anode toward the metal layer to electrically connect the anode to the metal layer, and are separate entities from the metal layer. The second insulating layer is provided between the organic electroluminescent unit and the conductive piercing layers and between the cathode and the conductive piercing layers.
Abstract:
A light emitting device includes a light emitting element and a luminescent medium. The luminescent medium contains a rare earth complex wherein a compound represented by the following formula (1) is employed as a ligand: wherein X and Y are the same or different and are individually O, S or Se; R1, R2, R3 and R4 are the same or different, excluding a situation where R1, R2, R3 and R4 are all the same as each other, and are individually an alkyl or alkoxy group of a linear or branched structure having not more than 20 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a heterocyclic group or a substitution product of any of these groups; n is an integer ranging from 2 to 20; and Z and W are the same or different and are individually a hydrogen atom, a deuterium atom, a halogen atom or an alkyl group.
Abstract:
Conventional independent component analysis has had a problem that performance deteriorates when the number of sound sources exceeds the number of microphones. Conventional l1 norm minimization method assumes that noises other than sound sources do not exist, and is problematic in that performance deteriorates in environments in which noises other than voices such as echoes and reverberations exist. The present invention considers the power of a noise component as a cost function in addition to an l1 norm used as a cost function when the l1 norm minimization method separates sounds. In the l1 norm minimization method, a cost function is defined on the assumption that voice has no relation to a time direction. However, in the present invention, a cost function is defined on the assumption that voice has a relation to a time direction, and because of its construction, a solution having a relation to a time direction is easily selected.
Abstract:
According to one embodiment, an organic electroluminescent element includes: a first electrode having a first and a second major surfaces; a second electrode opposed to part of the first major surface; an organic luminescent layer provided between the first and the second electrodes; an optical layer having a third major surface opposed to the second major surface and a fourth major surface on opposite side from the third major surface. The fourth major surface includes a first region overlapping the second electrode, and a second region not overlapping the second electrode. The fourth major surface includes a first concave-convex provided in the first region and a second concave-convex provided in the second region. A planarization layer is provided on the second region and burying the second concave-convex.
Abstract:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, and an emissive layer interposed between the anode and the cathode and including a host material and an emitting dopant. The host material includes a polymer containing dibenzothiophene backbones represented by the following formula (1) as repeating units: wherein n is an integer of from 20 to 10,000.
Abstract:
According to one embodiment, an organic EL display includes a substrate and a pixel. The pixel is disposed on the substrate and includes a first color displaying portion and a second color displaying portion. The first color displaying portion has a first organic light emitting layer. The second color displaying portion has a second organic light emitting layer having an emission spectrum different from an emission spectrum of the first organic light emitting layer. The first color displaying portion has two sub-pixels. One of the two sub-pixels has a color filter.