Abstract:
The invention relates to aligned emissive polymer blended with at least one chromophore with rigid-rod-type or discotic asymmetric molecular structure; to film incorporating such polymer blends; to devices incorporating such polymers blends or films, and to uses thereof.
Abstract:
The invention refers to a composition comprising a liquid crystal material and an additive, preferably a dopant capable of forming a complex with said LC material, to a liquid crystal cell comprising this composition, uses thereof and to a method of improving the response time of a liquid crystal.
Abstract:
The present invention relates to a nanoparticle/nanofiber based chemical sensor arrangement and arrays of such arrangements, to a method of fabrication thereof and to uses thereof, and furthermore relates to a method of detecting an analyte. In particular, the present invention relates to a chemical sensor arrangement having an enhanced selectivity or sensitivity, and it relates to a method of detecting an analyte at enhanced selectivity or sensitivity.
Abstract:
A control unit receives a sensor output and performs signal processing on the sensor output to produce an internal signal. The control unit produces internal data by adding time data to an internal signal and transmits the internal data to an in-vehicle network. A diagnostic unit receives the internal data from the in-vehicle network and stores the internal data in an internal data storing device. The diagnostic unit also receives a measurement signal produced based on the sensor output. The diagnostic unit produces external data by adding time data containing time at which the second timer resets a time count when an ignition switch is closed and stores the external data. The diagnostic unit reproduces the internal data and the external data and extracts the internal signal and the measurement signal. The diagnostic unit displays or stores the internal signal and the measurement signal according to the time data.
Abstract:
A functional molecular element whose functions can be controlled by an electric field based on a new principle. A Lewis base molecule (14) with positive permittivity anisotropy or a dipole moment in the major axis direction of the molecule is disposed, via a metal ion (3) that can act as a Lewis acid, in a pendant-like form on a key molecule (2) in the form of a line or film that has a conjugated system and exhibits conductivity, thereby forming a functional molecular element 1 that can realize a function where the conformation changes due to the application of an electric field. The conductive key molecule (2) and the Lewis base molecule (14) form a complex with the metal ion (3). When an electric field is applied in a direction perpendicular to the plane of the paper in FIG. 1(b), for example, the Lewis base molecule (14) performs a 90° “neck twisting” movement with the up-down direction in the drawing as the axis. Also, when an electric field is applied in the up-down direction in the drawing as shown in FIG. 1(c), the Lewis base molecule (14) performs a “see-saw” movement with the direction perpendicular to the plane of the paper as the axis, thereby switching the conductivity of the conductive key molecule (2).
Abstract:
Method of driving a liquid crystal display such as a ferroelectric liquid crystal display by multiplex addressing. The display has a pair of bases. A transparent electrode layer and an orientation film are formed in this order on each base. The two bases are placed opposite to each other with a certain gap between them. A ferroelectric liquid crystal material is inserted in the gap. Let Vthlow be the voltage applied when the transmittivity of the liquid crystal material begins to change. Let Vthhigh be the voltage applied when the transmittivity of the liquid crystal material substantially assumes its maximum value. First and second select pulses of opposite polarities are applied to the liquid crystal material. Let Vs1 be the voltage of the first select pulse. Let Vs2 be the voltage of the second select voltage. This method is characterized in that Vs1=±(Vthlow−&Dgr;V), where &Dgr;V>0, and that Vs2=∓(Vthhigh+&Dgr;V), where &Dgr;V>0.
Abstract:
A liquid crystal device comprises a pair of substrates and a liquid crystal provided between the paired substrates wherein domains whose threshold voltages are different from one another are finely distributed throughout the liquid crystal. In particular, the respective substrates each has a transparent electrode and an alignment film formed thereon in this order and the substrates are assembled to establish a given space therebetween, and a ferroelectric liquid crystal being injected into the given space wherein domains are finely distributed as set out above, thereby providing a a liquid crystal display device. The fine distribution is such that when a transmittance through inverted domains is 25%, the number of domains (microdomains) having a size of larger than 2 &mgr;m&phgr; in a field of 1 mm2 is not smaller than 300, preferably not smaller than 600, and the width of the threshold voltage within the domains is not smaller than 2 volts within a transmittance range of from 10 to 90%. The liquid crystal device, particularly the display device, keeps a high contrast and can easily, reliably realize an analog gray-side display at low costs.
Abstract:
A liquid crystal element improved to reduce hysteresis and after-image by relaxing electronic polarization at an interface between liquid crystal and an orientation film, and hence to enhance an image quality and realize smooth display of a dynamic image irrespective of a material of liquid crystal. The liquid crystal element includes a plurality of base bodies each having a liquid crystal orientation film, the base bodies being opposed to each other on the orientation film side with a specific gap put therebetween; and liquid crystal disposed in the gap; wherein each of the orientation films has a property capable of relaxing polarization at an interface with the liquid crystal. The liquid crystal orientation film may be composed of an orientation film having low polarization such as a SiOx oblique vapor-deposition film or may be composed of a stacked film in which a thin film having low polarization and capable of relaxing polarization at an interface with the liquid crystal or an organic complex having an electric conductivity of 1.2×10−8 S/cm or more is stacked on an orientation film.
Abstract:
A liquid crystal device comprises a pair of substrates and a liquid crystal provided between the paired substrates wherein domains whose threshold voltages are different from one another are finely distributed throughout the liquid crystal. In particular, the respective substrates each has a transparent electrode and an alignment film formed thereon in this order and the substrates are assembled to establish a given space therebetween, and a ferroelectric liquid crystal being injected into the given space wherein domains are finely distributed as set out above, thereby providing a a liquid crystal display device. The fine distribution is such that when a transmittance through inverted domains is 25%, the number of domains (microdomains) having a size of larger than 2 .mu.m.phi. in a field of 1 mm.sup.2 is not smaller than 300, preferably not smaller than 600, and the width of the threshold voltage within the domains is not smaller than 2 volts within a transmittance range of from 10 to 90%. The liquid crystal device, particularly the display device, keeps a high contrast and can easily, reliably realize an analog gray-scale display at low costs.
Abstract:
A liquid crystal is dropped on one end portion of a bottom substrate that is coated with a sealing material in an outer peripheral portion. After a top substrate is laid on the bottom substrate, the liquid crystal is expanded from the one end portion of the bottom substrate toward the other end portion. If necessary, an air ejecting opening is formed in the sealing material at a position located in the other end portion of the bottom substrate. The surfaces of the top and bottom substrates may be formed with grooves for accommodating an excessive part of the liquid crystal at positions inside the sealing member. As a result, no air bubbles remain in the liquid crystal even if the charging of the liquid crystal is performed at the atmospheric pressure.