Abstract:
A statistical methodology is disclosed to provide time-to-event estimates for oilfield equipment. A method according to the present invention extracts unbiased information from equipment performance data and considers parameters interactions without recourse to data thinning. The analysis explicitly accounts for items of equipment that are still operational at the time of analysis. A method according to the present invention may also be utilized to apply survival analysis to any oilfield equipment components where time-to-event information has been recorded. The method of the present invention allows comparative reckoning between different components present in the system comprising several or many individual components and allows analysis of these components either individually or simultaneously, i.e., in the presence of other components.
Abstract:
A method for optimizing expensive functions with expensive nonlinear constraints. The method includes selecting sample data for evaluating an expensive function of a simulation, generating a function proxy model for the expensive function and a constraint proxy model for an expensive nonlinear constraint of the expensive function using an approximation scheme, calculating a first solution point for the simulation using the proxy models, and evaluating the expensive function at the first solution point using the sample data. When the expensive function and the proxy models do not converge at the first solution point, the method further includes adding the first solution point to the sample data for updating the proxy models. The method further includes repeating the calculation and evaluation of solution points until the expensive function and the proxy models converge and, following convergence, identifying an optimal solution of the function proxy model and the constraint proxy model.
Abstract:
A method of determining a selection of well measurements and/or their respective control parameters is described based on a global target having predetermined sensitivities to a multitude of uncertainties associated with input variables to a model including the step of ranking measurements and control parameters in accordance with their capability to reduce the uncertainties of input variables identified as most sensitive input variables through simulations using the model or a reduced variant of the model.
Abstract:
The invention relates to a method of performing an oilfield operation of an oilfield having at least one well having a wellbore penetrating a subterranean formation for extracting fluid from an underground reservoir therein. The method steps include analyzing the oilfield operation to generate a decision tree comprising a first decision and a second decision, wherein a first outcome of the first decision dictates acquiring information relevant to the second decision, formulating a figure of merit of the oilfield operation according to the decision tree based on the information and uncertainties associated with the oilfield, determining a value of the figure of merit by modeling the oilfield operation using statistical sampling, and performing the oilfield operation upon making the first decision based on the value of the figure of merit.
Abstract:
The invention concerns a neutron measurement method for determining porosity of an earth formation surrounding a borehole comprising: conveying a tool along said borehole, wherein said tool comprises a source of neutron radiation and at least one detector axially spaced from said source; generating measured detector response for said at least one detector that is indicative of neutron radiation from said source interacting with said earth formations; operating said measured detector response with a predetermined mathematical equation and thereby obtaining corrected detector response that is independent of the density of said earth formation; and determining porosity of the earth formation surrounding the borehole from said corrected detector response. The invention also relates to a system implementing said method.
Abstract:
Described is an apparatus for detecting and removing deposits from a surface exposed to wellbore fluids. The apparatus can monitor the rate of deposition and subsequently remove the deposited material. The combination of detection apparatus and removal apparatus provides an instrument with self-cleaning operation mode.
Abstract:
Methods for optimization of oil well production with deference to reservoir and financial uncertainty include the application of portfolio management theory to associate levels of risk with Net Present Values (NPV) of the amount of oil expected to be extracted from the reservoir. Using the methods of the invention, production parameters such as pumping rates can be chosen to maximize NPV without exceeding a given level of risk, or, for a given level of risk, the minimum guaranteed NPV can be predicted to a 90% probability. An iterative process of generating efficient frontiers for objective functions such as NPV is provided.