Abstract:
A method is provided for treating at least a portion of a well. The method includes the steps of: (a) simultaneously introducing into a mixer at least: (i) a first stream comprising water; (ii) a second stream comprising a dry, hydratable, viscosity-increasing agent for water, wherein the second stream is substantially free of water; and (iii) a third stream comprising a non-hydratable, insoluble particulate; wherein at least the first and second streams are not mixed prior to being introduced into the mixer; (b) mixing the first, second, and third streams in the mixer to form a pumpable mixture, wherein: (i) the mixer creates at least a sufficiently-high shear rate to disperse the viscosity-increasing agent and the insoluble particulate in the pumpable mixture; and (ii) the pumpable mixture has or is capable of developing a substantially-higher viscosity than the viscosity of the first stream; and (c) introducing a treatment fluid comprising the pumpable mixture into a wellbore.
Abstract:
A hydrocarbon industry servicing fluid comprises an irradiated fluid that is biologically inert. The fluid may be irradiated with ultraviolet light. A method comprises performing a hydrocarbon industry service operation with an irradiated fluid that is biologically inert. The method may comprise disposing of the irradiated fluid to the environment or capturing the irradiated fluid when the service operation is complete. The method may further comprise re-irradiating the captured irradiated fluid to produce a remediated fluid, and performing a service operation with the remediated fluid.
Abstract:
A process of increasing the viscosity of a gel, or the yield of a hydratable material includes heating a hydratable material, an aqueous component or both, prior to mixing the hydratable material with the aqueous component. In certain instances, the aqueous component is heated to a temperature of at least about 100° F., and the hydratable material component and the heated aqueous component are mixed together to form a gel in certain instances, the hydratable material component is heated to a temperature of at least about 100° F., and the heated hydratable material component and the aqueous component are mixed together to form a gel.
Abstract:
A method comprises rendering a hydrocarbon industry servicing fluid biologically inert without using chemical biocides. One method of rendering a hydrocarbon industry servicing fluid biologically inert comprises irradiating at least one constituent of the servicing fluid to produce an irradiated fluid. Another method comprises irradiating a used hydrocarbon industry servicing fluid to produce a remediated fluid that is biologically inert.A fluid treatment system comprises an irradiation apparatus, inlet piping directing an untreated fluid into the irradiation apparatus, outlet piping directing an irradiated fluid out of the irradiation apparatus, and a connection to a hydrocarbon industry application.
Abstract:
A hydrocarbon industry servicing fluid comprises an irradiated fluid that is biologically inert. The fluid may be irradiated with ultraviolet light. A method comprises performing a hydrocarbon industry service operation with an irradiated fluid that is biologically inert. The method may comprise disposing of the irradiated fluid to the environment or capturing the irradiated fluid when the service operation is complete. The method may further comprise re-irradiating the captured irradiated fluid to produce a remediated fluid, and performing a service operation with the remediated fluid.
Abstract:
Treatment fluids comprising gelling agents that comprise crosslinkable polymers and certain biopolymers, and methods of use in subterranean operations, are provided. In one embodiment, the present invention provides a method of treating a portion of a subterranean formation comprising: providing a treatment fluid that comprises an aqueous base fluid, a crosslinking agent, and a gelling agent comprising a polymer that is a crosslinkable polymer, and a polymer that is a biopolymer wherein a molecule of the biopolymer (1) consists only of glucose, or (2) has a backbone comprising one or more units that comprise at least (a) one glucose unit and (b) one linear or cyclic pyranose-type monosaccharide unit, wherein (a) and (b) have different molecular structures; and introducing the treatment fluid into a well bore penetrating the subterranean formation.
Abstract:
Provided are methods of modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations. In one embodiment, the methods comprise: providing a treatment fluid that comprises a base fluid and a surface-treating reagent capable of modifying the stress-activated reactivity of a mineral surface in a subterranean formation; introducing the treatment fluid into a subterranean formation; and allowing the surface-treating reagent to modify the stress-activated reactivity of at least a portion of a mineral surface in the subterranean formation.
Abstract:
A method comprising: providing at least one encaged treatment chemical that comprises a treatment chemical and a polymer carrier; placing the encaged treatment chemical into a portion of a subterranean formation; and allowing the treatment chemical to diffuse out of the encaged treatment chemical and into a portion of the subterranean formation or an area adjacent thereto.
Abstract:
This invention provides methods of fracturing subterranean zones, fracturing fluids and breaker activators for use in the fracturing fluids. The fracturing fluids are basically comprised of water, a gelling agent, a particulate proppant material, a delayed viscosity breaker and a breaker activator.
Abstract:
This invention is directed to treating fluid production and subterranean formation treating methods as well as compositions for treating fluids that reuse at least part of a prior treating fluid, particularly a fluid having one or more constituents that can be relinked. This includes conditioning a selected at least partially delinked flow-back fluid, recovered from a first treating fluid pumped into a well, such that the conditioned selected at least partially delinked flow-back fluid provides a constituent for a second treating fluid. Also included are pricing considerations. A composition for a treating fluid includes a treating fluid residual recovered from a well, preferably conditioned as described. Examples of such fluids include fracturing fluids and gravel pack fluids.